Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 5, Pages 953–971
DOI: https://doi.org/10.1070/IM9070
(Mi im9070)
 

This article is cited in 3 scientific papers (total in 3 papers)

Arithmetic of certain $\ell$-extensions ramified at three places. II

L. V. Kuz'min

National Research Centre "Kurchatov Institute", Moscow
References:
Abstract: Let $\ell$ be a regular odd prime, $k$ the $\ell$ th cyclotomic field and $K=k(\sqrt[\ell]{a})$, where $a$ is a positive integer. Under the assumption that there are exactly three places not over $\ell$ that ramify in $K_\infty/k_\infty$, we continue to study the structure of the Tate module (Iwasawa module) $T_\ell(K_\infty)$ as a Galois module. In the case $\ell=3$, we prove that for finite $T_\ell(K_\infty)$ we have $|T_\ell(K_\infty)|\,{=}\,\ell^r$ for some odd positive integer $r$. Under the same assumptions, if $\overline T_\ell(K_\infty)$ is the Galois group of the maximal unramified Abelian $\ell$-extension of $K_\infty$, then the kernel of the natural epimorphism $\overline T_\ell(K_\infty)\to T_\ell (K_\infty)$ is of order $9$. Some other results are obtained.
Keywords: Iwasawa theory, Tate module, extensions with restricted ramification.
Funding agency Grant number
National Research Centre "Kurchatov Institute" 1807
This paper was written with the support of the NRC ‘Kurchatov Institute’ (order 14.08.2019 no. 1807).
Received: 09.06.2020
Bibliographic databases:
Document Type: Article
UDC: 511.62
MSC: 11R23, 11R18
Language: English
Original paper language: Russian
Citation: L. V. Kuz'min, “Arithmetic of certain $\ell$-extensions ramified at three places. II”, Izv. Math., 85:5 (2021), 953–971
Citation in format AMSBIB
\Bibitem{Kuz21}
\by L.~V.~Kuz'min
\paper Arithmetic of certain $\ell$-extensions ramified at three places.~II
\jour Izv. Math.
\yr 2021
\vol 85
\issue 5
\pages 953--971
\mathnet{http://mi.mathnet.ru//eng/im9070}
\crossref{https://doi.org/10.1070/IM9070}
\zmath{https://zbmath.org/?q=an:1483.11243}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..953K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000714751600001}
\elib{https://elibrary.ru/item.asp?id=47534172}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120347002}
Linking options:
  • https://www.mathnet.ru/eng/im9070
  • https://doi.org/10.1070/IM9070
  • https://www.mathnet.ru/eng/im/v85/i5/p132
    Cycle of papers
    This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:242
    Russian version PDF:31
    English version PDF:24
    Russian version HTML:92
    References:39
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024