Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 5, Pages 972–1007
DOI: https://doi.org/10.1070/IM9098
(Mi im9098)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the classification problem for polynomials $f$ with a periodic continued fraction expansion of $\sqrt{f}$ in hyperelliptic fields

V. P. Platonovab, G. V. Fedorovca

a Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c Lomonosov Moscow State University
References:
Abstract: The classical problem of the periodicity of continued fractions for elements of hyperelliptic fields has a long and deep history. This problem has up to now been far from completely solved. A surprising result was obtained in [1] for quadratic extensions defined by cubic polynomials with coefficients in the field $\mathbb{Q}$ of rational numbers: except for trivial cases there are only three (up to equivalence) cubic polynomials over $\mathbb{Q}$ whose square root has a periodic continued fraction expansion in the field $\mathbb{Q}((x))$ of formal power series. In view of the results in [1], we completely solve the classification problem for polynomials $f$ with periodic continued fraction expansion of $\sqrt{f}$ in elliptic fields with the field of rational numbers as the field of constants.
Keywords: periodicity problem, continued fractions, elliptic curves, hyperelliptic fields, Jacobian variety, divisor class group, symbolic calculations, computer algebra.
Received: 20.08.2020
Revised: 01.12.2020
Bibliographic databases:
Document Type: Article
UDC: 511.6
Language: English
Original paper language: Russian
Citation: V. P. Platonov, G. V. Fedorov, “On the classification problem for polynomials $f$ with a periodic continued fraction expansion of $\sqrt{f}$ in hyperelliptic fields”, Izv. Math., 85:5 (2021), 972–1007
Citation in format AMSBIB
\Bibitem{PlaFed21}
\by V.~P.~Platonov, G.~V.~Fedorov
\paper On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields
\jour Izv. Math.
\yr 2021
\vol 85
\issue 5
\pages 972--1007
\mathnet{http://mi.mathnet.ru//eng/im9098}
\crossref{https://doi.org/10.1070/IM9098}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4324011}
\zmath{https://zbmath.org/?q=an:1483.11123}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..972P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000714744200001}
\elib{https://elibrary.ru/item.asp?id=47536647}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120491835}
Linking options:
  • https://www.mathnet.ru/eng/im9098
  • https://doi.org/10.1070/IM9098
  • https://www.mathnet.ru/eng/im/v85/i5/p152
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:653
    Russian version PDF:51
    English version PDF:39
    Russian version HTML:345
    References:42
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024