Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 5, Pages 883–931
DOI: https://doi.org/10.1070/IM9082
(Mi im9082)
 

This article is cited in 9 scientific papers (total in 9 papers)

Functional and analytic properties of a class of mappings in quasi-conformal analysis

S. K. Vodopyanov, A. O. Tomilov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We define a two-index scale $\mathcal Q_{q,p}$, $n-1<q\leq p<\infty$, of homeomorphisms of spatial domains in $\mathbb R^n$, the geometric description of which is determined by the control of the behaviour of the $q$-capacity of condensers in the target space in terms of the weighted $p$-capacity of condensers in the source space. We obtain an equivalent functional and analytic description of $\mathcal Q_{q,p}$ based on the properties of the composition operator (from weighted Sobolev spaces to non-weighted ones) induced by the inverses of the mappings in $\mathcal Q_{q,p}$.
When $q=p=n$, the class of mappings $\mathcal Q_{n,n}$ coincides with the set of so-called $Q$-homeomorphisms which have been studied extensively in the last 25 years.
Keywords: quasi-conformal analysis, Sobolev space, composition operator, capacity and modulus of a condenser.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1613
This paper was written with the support of the Mathematical Centre in Akademgorodok, contract no. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.
Received: 29.06.2020
Revised: 04.10.2020
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.54
MSC: 30C65, 31B15, 46E35
Language: English
Original paper language: Russian
Citation: S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931
Citation in format AMSBIB
\Bibitem{VodTom21}
\by S.~K.~Vodopyanov, A.~O.~Tomilov
\paper Functional and analytic properties of~a~class of~mappings in quasi-conformal analysis
\jour Izv. Math.
\yr 2021
\vol 85
\issue 5
\pages 883--931
\mathnet{http://mi.mathnet.ru//eng/im9082}
\crossref{https://doi.org/10.1070/IM9082}
\zmath{https://zbmath.org/?q=an:1486.30074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..883V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000714745800001}
\elib{https://elibrary.ru/item.asp?id=47533774}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120171195}
Linking options:
  • https://www.mathnet.ru/eng/im9082
  • https://doi.org/10.1070/IM9082
  • https://www.mathnet.ru/eng/im/v85/i5/p58
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:476
    Russian version PDF:75
    English version PDF:36
    Russian version HTML:188
    References:58
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024