Аннотация:
Работа посвящена исследованию детальных свойств слабоотражающих граничных условий M-PML (от английского Multiaxial Perfectly Matched Layer), возникающих при ограничении расчетной области. Эти условия являются устойчивыми для произвольного типа анизотропии при правильном выборе стабилизирующего параметра. В первой части работы [3] авторами была показана линейная зависимость коэффициента отражения от стабилизирующего параметра. На основе этого исследования сформулирована задача поиска оптимального стабилизирующего параметра, обеспечивающая устойчивость и минимальные отражения. В данной работе получен необходимый признак устойчивости M-PML, позволяющий ограничить нижние значения стабилизирующего параметра. Показано, что этот признак не является достаточным.
Образец цитирования:
М. Н. Дмитриев, В. В. Лисица, “Применение слабоотражающих граничных условий M-PML при моделировании волновых процессов в анизотропных средах. Часть II: Устойчивость”, Сиб. журн. вычисл. матем., 15:1 (2012), 45–54; Num. Anal. Appl., 5:1 (2012), 36–44
Hanming Chen, Wenze Cheng, Lingqian Wang, Hui Zhou, “Efficient Implementation of CFS-CPML in FDTD Solutions of Second-Order Seismic Wave Equations”, IEEE Trans. Geosci. Remote Sensing, 62 (2024), 1
Wei Zhong, Tielin Liu, “An Implementation Method of the Complex Frequency-Shifted Uniaxial/Multi-Axial PML Technique for Viscoelastic Seismic Wave Propagation”, Journal of Earthquake Engineering, 28:4 (2024), 885
Pled F. Desceliers Ch., “Review and Recent Developments on the Perfectly Matched Layer (Pml) Method For the Numerical Modeling and Simulation of Elastic Wave Propagation in Unbounded Domains”, Arch. Comput. Method Eng., 29:1 (2022), 471–518
Yiwen He, Ting Wu, Yu-Po Wong, Temesgen Bailie Workie, Jingfu Bao, Ken-ya Hashimoto, 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM), 2022, 74
Yingjie Gao, Meng-Hua Zhu, “Application of the Reflectionless Discrete Perfectly Matched Layer for Acoustic Wave Simulation”, Front. Earth Sci., 10 (2022)
Poursartip B. Fathi A. Tassoulas J.L., “Large-Scale Simulation of Seismic Wave Motion: a Review”, Soil Dyn. Earthq. Eng., 129 (2020), 105909
Lisitsa V. Kolyukhin D. Tcheverda V., “Statistical Analysis of Free-Surface Variability'S Impact on Seismic Wavefield”, Soil Dyn. Earthq. Eng., 116 (2019), 86–95
Koskela J. Plessky V. Willemsen B. Turner P. Hammond B. Fenzi N., “Hierarchical Cascading Algorithm For 2-D Fem Simulation of Finite Saw Devices”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65:10 (2018), 1933–1942
Koskela J. Plessky V., 2018 IEEE International Ultrasonics Symposium (Ius), IEEE International Ultrasonics Symposium, IEEE, 2018
Gao K. Huang L., “Optimal Damping Profile Ratios For Stabilization of Perfectly Matched Layers in General Anisotropic Media”, Geophysics, 83:1 (2018), T15–T30
Julius Koskela, Victor Plessky, 2018 IEEE International Ultrasonics Symposium (IUS), 2018, 1
P. Yang, Zh.-Ch. Li, B.-L. Gu, “Pure quasi-P wave forward modeling method in TI media and its application to RTM”, Chinese J. Geophys.-Chinese Ed., 60:11 (2017), 4447–4467
D. Wei, X. Zhao, J. Wang, J.-Sh. Wang, “Application of improved recursive integral perfect matched layer method on ultrasonic testing”, Eng. Lett., 25:3 (2017), 228–233
A. Fathi, B. Poursartip, L. F. Kallivokas, “Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media”, Int. J. Numer. Methods Eng., 101:3 (2015), 165–198
P. Ping, Yu. Zhang, Y. Xu, “A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations”, J. Appl. Geophys., 101 (2014), 124–135
Y.-S. Liu, J.-W. Teng, S.-L. Liu, T. Xu, “Explicit finite element method with triangle meshes stored by sparse format and its perfectly matched layers absorbing boundary condition”, Chinese J. Geophys.-Chinese Ed., 56:9 (2013), 3085–3099
V. Lisitsa, V. Tcheverda, D. Vishnevsky, “Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes”, Comput. Geosci., 16:4 (2012), 1135–1152