231 citations to https://www.mathnet.ru/rus/mzm1234
-
Das S.R., Jevicki A., Suzuki K., “Three Dimensional View of the Syk/AdS Duality”, J. High Energy Phys., 2017, no. 9, 017
-
Pechentsov A.S., “Distribution of the Spectrum of a Singular Positive Sturm-Liouville Operator Perturbed By the Dirac Delta Function”, Differ. Equ., 53:8 (2017), 1029–1034
-
С. И. Митрохин, “Спектральные свойства семейства дифференциальных операторов четного порядка с суммируемым потенциалом”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2017, № 4, 3–15 ; S. I. Mitrokhin, “Spectral properties of the family of even order differential operators with a summable potential”, Moscow University Mathematics Bulletin, 72:4 (2017), 137–148
-
Ugurlu E., Bairamov E., “The Spectral Analysis of a Nuclear Resolvent Operator Associated With a Second Order Dissipative Differential Operator”, Comput. Methods Funct. Theory, 17:2 (2017), 237–253
-
Kritskov L.V., “Classes of Uniform Convergence of Spectral Expansions For the One-Dimensional Schrodinger Operator With a Distribution Potential”, Differ. Equ., 53:5 (2017), 583–594
-
Konstantinov A. Konstantinov O., “Sturm-Liouville Operators With Matrix Distributional Coefficients”, Methods Funct. Anal. Topol., 23:1 (2017), 51–59
-
Leonid V. Kritskov, Springer Proceedings in Mathematics & Statistics, 216, Functional Analysis in Interdisciplinary Applications, 2017, 245
-
Ю. В. Тихонов, И. А. Шейпак, “Описание самоподобных мультипликаторов в негативных соболевских пространствах с условием Дирихле”, Матем. заметки, 99:2 (2016), 314–318 ; J. V. Tikhanov, I. A. Sheipak, “Description of Self-Similar Multipliers in Negative Sobolev Spaces Satisfying the Dirichlet Condition”, Math. Notes, 99:2 (2016), 335–339
-
К. А. Мирзоев, А. А. Шкаликов, “Дифференциальные операторы четного порядка с коэффициентами-распределениями”, Матем. заметки, 99:5 (2016), 788–793 ; K. A. Mirzoev, A. A. Shkalikov, “Differential Operators of Even Order with Distribution Coefficients”, Math. Notes, 99:5 (2016), 779–784
-
А. М. Савчук, “Восстановление потенциала оператора Штурма–Лиувилля по конечному набору собственных значений и нормировочных чисел”, Матем. заметки, 99:5 (2016), 715–731 ; A. M. Savchuk, “Reconstruction of the Potential of the Sturm–Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants”, Math. Notes, 99:5 (2016), 715–728