229 citations to https://www.mathnet.ru/rus/mzm1234
-
Koshmanenko V. Dudkin M., “Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators”, Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators, Operator Theory Advances and Applications, 253, Springer Int Publishing Ag, 2016, 1–237
-
Т. Р. Гадыльшин, “Краевые задачи для уравнения Шрёдингера с быстроосциллирующим и дельта-образным потенциалами”, Матем. заметки, 98:6 (2015), 842–852 ; T. R. Gadylshin, “Boundary-Value Problems for the Schrödinger Equation with Rapidly Oscillating and Delta-Liked Potentials”, Math. Notes, 98:6 (2015), 900–908
-
В. Е. Владыкина, А. А. Шкаликов, “Асимптотика решений уравнения Штурма–Лиувилля с сингулярными коэффициентами”, Матем. заметки, 98:6 (2015), 832–841 ; V. E. Vladikina, A. A. Shkalikov, “Asymptotics of the Solutions of the Sturm–Liouville Equation with Singular Coefficients”, Math. Notes, 98:6 (2015), 891–899
-
Horyunov A.S., “Convergence and Approximation of the Sturm-Liouville Operators With Potentials-Distributions”, Ukr. Math. J., 67:5 (2015), 680–689
-
Konstantinov O.O., “Two-Term Differential Equations With Matrix Distributional Coefficients”, Ukr. Math. J., 67:5 (2015), 711–722
-
Shveikina O.A., “Equiconvergence Theorems For Singular Sturm-Liouville Operators With Various Boundary Conditions”, Differ. Equ., 51:2 (2015), 177–185
-
Minami N., “Definition and Self-Adjointness of the Stochastic Airy Operator”, Markov Process. Relat. Fields, 21:3, 2 (2015), 695–711
-
Б. Е. Кангужин, Д. Б. Нурахметов, Н. Е. Токмагамбетов, “Оператор Лапласа с $\delta$-подобными потенциалами”, Изв. вузов. Матем., 2014, № 2, 9–16 ; B. E. Kanguzhin, D. B. Nurakhmetov, N. E. Tokmagambetov, “Laplace operator with $\delta$-like potentials”, Russian Math. (Iz. VUZ), 58:2 (2014), 6–12
-
V. M. Bruk, “On the Characteristic Operator of an Integral Equation with a Nevanlinna Measure in the Infinite-Dimensional Case”, Журн. матем. физ., анал., геом., 10:2 (2014), 163–188
-
Yan J., Shi G., “Inequalities Among Eigenvalues of Sturm-Liouville Problems with Distribution Potentials”, J. Math. Anal. Appl., 409:1 (2014), 509–520