229 citations to https://www.mathnet.ru/rus/mzm1234
-
Amirov R., Topsakal N., “On Inverse Problem For Singular Sturm-Liouville Operator With Discontinuity Conditions”, Bull. Iran Math. Soc., 40:3 (2014), 585–607
-
Shveikina O.A., “Theorems on Asymptotics For Singular Sturm-Liouville Operators With Various Boundary Conditions”, Differ. Equ., 50:5 (2014), 623–632
-
Guseinov I.M., Dzhamshidipur A.G., “Inverse Scattering Problem For the Sturm-Liouville Equation With Spectral Parameter in the Discontinuity Condition”, Differ. Equ., 50:4 (2014), 554–558
-
A. M. Savchuk, A. A. Shkalikov, “The Dirac Operator with Complex-Valued Summable Potential”, Матем. заметки, 96:5 (2014), 777–810 ; A. M. Savchuk, A. A. Shkalikov, “The Dirac Operator with Complex-Valued Summable Potential”, Math. Notes, 96:5 (2014), 777–810
-
Yalç{\i}n Güldü, Selma Gülyaz, “On integral representation for solution of generalized Sturm-Liouville equation with discontinuity conditions”, bspm, 33:2 (2014), 97
-
В. М. Брук, “Об обратимых линейных отношениях, порожденных интегральным уравнением с неванлинновской мерой”, Изв. вузов. Матем., 2013, № 2, 16–29 ; V. M. Bruk, “Invertible linear relations generated by an integral equation with a Nevanlinna measure”, Russian Math. (Iz. VUZ), 57:2 (2013), 13–24
-
Golovaty Yu., “1D Schrodinger Operators with Short Range Interactions: Two-Scale Regularization of Distributional Potentials”, Integr. Equ. Oper. Theory, 75:3 (2013), 341–362
-
А. М. Савчук, А. А. Шкаликов, “Равномерная устойчивость обратной задачи Штурма–Лиувилля по спектральной функции в шкале соболевских пространств”, Теория функций и уравнения математической физики, Сборник статей. К 90-летию со дня рождения члена-корреспондента РАН Льва Дмитриевича Кудрявцева, Труды МИАН, 283, МАИК «Наука/Интерпериодика», М., 2013, 188–203 ; A. M. Savchuk, A. A. Shkalikov, “Uniform stability of the inverse Sturm–Liouville problem with respect to the spectral function in the scale of Sobolev spaces”, Proc. Steklov Inst. Math., 283 (2013), 181–196
-
А. Ю. Трынин, “Об одной обратной узловой задаче для оператора Штурма–Лиувилля”, Уфимск. матем. журн., 5:4 (2013), 116–129 ; A. Yu. Trynin, “On inverse nodal problem for Sturm-Liouville operator”, Ufa Math. J., 5:4 (2013), 112–124
-
Makarov V.L., Rossokhata N.O., Dragunova D.V., “An Exponentially Convergent Functional-Discrete Method for Solving Sturm-Liouville Problems with a Potential Including the Dirac Delta-Function”, J. Comput. Appl. Math., 250 (2013), 39–57