- P. A. Damianou, C. Sophocleous, “Symmetries of Hamiltonian systems with two degrees of freedom”, Journal of Mathematical Physics, 40, no. 1, 1999, 210
- S Lafortune, P Winternitz, L Martina, “Point symmetries of generalized Toda field theories”, J. Phys. A: Math. Gen., 33, no. 12, 2000, 2419
- H. Yoshida, A. Ramani, B. Grammaticos, J. Hietarinta, “On the non-integrability of some generalized Toda lattices”, Physica A: Statistical Mechanics and its Applications, 144, no. 2-3, 1987, 310
- Marek Szydlowski, “The Eisenhart Geometry as an Alternative Description of Dynamics in Terms of Geodesics”, General Relativity and Gravitation, 30, no. 6, 1998, 887
- M.A. Olshanetsky, “Explicit solutions of classical generalized Toda models”, Physica D: Nonlinear Phenomena, 3, no. 1-2, 1981, 118
- Oliver Knill, “Isospectral deformations of random Jacobi operators”, Commun.Math. Phys., 151, no. 2, 1993, 403
- E. K. Sklyanin, “Boundary conditions for integrable equations”, Funct Anal Its Appl, 21, no. 2, 1987, 164
- Joana M. Nunes da Costa, Pantelis A. Damianou, “Toda systems and exponents of simple Lie groups”, Bulletin des Sciences Mathématiques, 125, no. 1, 2001, 49
- V D Ivashchuk, V N Melnikov, “Exact solutions in multidimensional gravity with antisymmetric forms”, Class. Quantum Grav., 18, no. 20, 2001, R87
- Andrea Brini, “E8 spectral curves”, Proc. London Math. Soc., 121, no. 4, 2020, 954