- Y. Kodama, J. Ye, “Iso-spectral deformations of general matrix and their reductions on Lie algebras”, Commun.Math. Phys., 178, no. 3, 1996, 765
- L. A. Ferreira, R. M. Londe, “Solutions to higher Hamiltonians in the Toda hierarchies”, Journal of Mathematical Physics, 31, no. 12, 1990, 3041
- Jan L. Cieśliński, Marek Czachor, Nikolai V. Ustinov, “Darboux covariant equations of von Neumann type and their generalizations”, Journal of Mathematical Physics, 44, no. 4, 2003, 1763
- L. Fehér, “Action-angle map and duality for the open Toda lattice in the perspective of Hamiltonian reduction”, Physics Letters A, 377, no. 41, 2013, 2917
- O. I. Bogoyavlensky, 93, Stochastic Behavior in Classical and Quantum Hamiltonian Systems, 1979, 151
- Integrable Hamiltonian Systems, 2004
- Anthony M. Bloch, Michael I. Gekhtman, “Hamiltonian and gradient structures in the Toda flows”, Journal of Geometry and Physics, 27, no. 3-4, 1998, 230
- Andrew McDaniel, Lawrence Smolinsky, “A Lie theoretic galois theory for the spectral curves of an integrable system: I”, Commun.Math. Phys., 149, no. 1, 1992, 127
- R S Farwell, M Minami, “Kac-van Moerbeke equations associated with two-dimensional SU(n+1) periodic Toda lattices”, J. Phys. A: Math. Gen., 15, no. 2, 1982, 355
- Pantelis A Damianou, “On the bi-Hamiltonian structure of Bogoyavlensky–Toda lattices”, Nonlinearity, 17, no. 2, 2004, 397