213 citations to 10.1007/BF01617919 (Crossref Cited-By Service)
  1. P. P. Kulish, E. K. Sklyanin, 151, Integrable Quantum Field Theories, 1982, 61  crossref
  2. George Wilson, “The modified Lax and two-dimensional Toda lattice equations associated with simple Lie algebras”, Ergod. Th. Dynam. Sys., 1, no. 3, 1981, 361  crossref
  3. D.I. Olive, N. Turok, “Algebraic structure of Toda systems”, Nuclear Physics B, 220, no. 4, 1983, 491  crossref
  4. M. A. Ol'shanetskii, A. M. Perelomov, “The Toda chain as a reduced system”, Theor Math Phys, 45, no. 1, 1980, 843  crossref
  5. V S Gerdjikov, E G Evstatiev, R I Ivanov, “The complex Toda chains and the simple Lie algebras: II. Explicit solutions and asymptotic behaviour”, J. Phys. A: Math. Gen., 33, no. 5, 2000, 975  crossref
  6. M.A. Olshanetsky, A.M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Physics Reports, 71, no. 5, 1981, 313  crossref
  7. J F van Diejen, E Emsiz, “Bispectral Dual Difference Equations for the Quantum Toda Chain with Boundary Perturbations”, International Mathematics Research Notices, 2019, no. 12, 2019, 3740  crossref
  8. Yuji Kodama, Barbara A Shipman, “Fifty years of the finite nonperiodic Toda lattice: a geometric and topological viewpoint”, J. Phys. A: Math. Theor., 51, no. 35, 2018, 353001  crossref
  9. A. Annamalai, K. M. Tamizhmani, “Integrability of Toda lattice by generalized variational symmetry approach”, Journal of Mathematical Physics, 34, no. 5, 1993, 1876  crossref
  10. O.I. Bogoyavlensky, Analysis, et Cetera, 1990, 165  crossref
Previous
1
10
11
12
13
14
15
16
22
Next