- P. P. Kulish, E. K. Sklyanin, 151, Integrable Quantum Field Theories, 1982, 61
- George Wilson, “The modified Lax and two-dimensional Toda lattice equations associated with simple Lie algebras”, Ergod. Th. Dynam. Sys., 1, no. 3, 1981, 361
- D.I. Olive, N. Turok, “Algebraic structure of Toda systems”, Nuclear Physics B, 220, no. 4, 1983, 491
- M. A. Ol'shanetskii, A. M. Perelomov, “The Toda chain as a reduced system”, Theor Math Phys, 45, no. 1, 1980, 843
- V S Gerdjikov, E G Evstatiev, R I Ivanov, “The complex Toda chains and the simple Lie algebras: II. Explicit solutions and asymptotic behaviour”, J. Phys. A: Math. Gen., 33, no. 5, 2000, 975
- M.A. Olshanetsky, A.M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Physics Reports, 71, no. 5, 1981, 313
- J F van Diejen, E Emsiz, “Bispectral Dual Difference Equations for the Quantum Toda Chain with Boundary Perturbations”, International Mathematics Research Notices, 2019, no. 12, 2019, 3740
- Yuji Kodama, Barbara A Shipman, “Fifty years of the finite nonperiodic Toda lattice: a geometric and topological viewpoint”, J. Phys. A: Math. Theor., 51, no. 35, 2018, 353001
- A. Annamalai, K. M. Tamizhmani, “Integrability of Toda lattice by generalized variational symmetry approach”, Journal of Mathematical Physics, 34, no. 5, 1993, 1876
- O.I. Bogoyavlensky, Analysis, et Cetera, 1990, 165