- Melinda E. Koelling, Anthony M. Bloch, Michael Gekhtman, “Qualitative behavior of non-Abelian Toda-like flows”, Physica D: Nonlinear Phenomena, 199, no. 3-4, 2004, 317
- Tassos Bountis, Harvey Segur, Franco Vivaldi, “Integrable Hamiltonian systems and the Painlevé property”, Phys. Rev. A, 25, no. 3, 1982, 1257
- W.E. Ferguson, H. Flaschka, D.W. McLaughlin, “Nonlinear normal modes for the Toda Chain”, Journal of Computational Physics, 45, no. 2, 1982, 157
- A. Chervov, “Raising Operators for the Whittaker Wave Functions of the Toda Chain and Intertwining Operators”, J Math Sci, 128, no. 4, 2005, 3121
- Jarmo Hietarinta, “Direct methods for the search of the second invariant”, Physics Reports, 147, no. 2, 1987, 87
- Pantelis A. Damianou, Stelios P. Kouzaris, “Bogoyavlensky–Volterra and Birkhoff integrable systems”, Physica D: Nonlinear Phenomena, 195, no. 1-2, 2004, 50
- Xiao Yang, Dianlou Du, “Solving negative and mixed Toda hierarchies by Jacobi inversion problems”, Physics Letters A, 379, no. 7, 2015, 626
- R S Farwell, M Minami, “Derivation and solution of the two dimensional Toda lattice equations by use of the Iwasawa decomposition”, J. Phys. A: Math. Gen., 15, no. 1, 1982, 25
- A. V. Bolsinov, A. T. Fomenko, Integrable Geodesic Flows on Two-Dimensional Surfaces, 2000, 287
- D. Olive, Neil Turok, “The symmetries of Dynkin diagrams and the reduction of Toda field equations”, Nuclear Physics B, 215, no. 4, 1983, 470