- Spenta R. Wadia, Sumit R. Das, “Topology of quantum gauge fields and duality (I): Yang-Mills-Higgs system in 2 + 1 dimensions”, Physics Letters B, 106, no. 5, 1981, 386
- Rebecca Bristow, “Integrability of generalised type II defects in affine Toda field theory”, J. High Energ. Phys., 2017, no. 11, 2017, 67
- Bertram Kostant, “The solution to a generalized Toda lattice and representation theory”, Advances in Mathematics, 34, no. 3, 1979, 195
- B. A. Kupershmidt, George Wilson, “Conservation laws and symmetries of generalized sine-Gordon equations”, Commun.Math. Phys., 81, no. 2, 1981, 189
- Allan P. Fordy, Peter P. Kulish, “Nonlinear Schr�dinger equations and simple Lie algebras”, Commun.Math. Phys., 89, no. 3, 1983, 427
- Luis Casian, Yuji Kodama, “Singular structure of Toda lattices and cohomology of certain compact Lie groups”, Journal of Computational and Applied Mathematics, 202, no. 1, 2007, 56
- M. A. Olshanetsky, A. M. Perelomov, “Explicit solutions of classical generalized toda models”, Invent Math, 54, no. 3, 1979, 261
- D. Olive, N. Turok, “Local conserved densities and zero-curvature conditions for Toda lattice field theories”, Nuclear Physics B, 257, 1985, 277
- V. S. Gerdjikov, A. B. Yanovski, “Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system”, Journal of Mathematical Physics, 35, no. 7, 1994, 3687
- V S Gerdjikov, E G Evstatiev, R I Ivanov, “The complex Toda chains and the simple Lie algebras - solutions and large time asymptotics”, J. Phys. A: Math. Gen., 31, no. 40, 1998, 8221