theory of gravity; general theory of relativity; physical interpretation; exact solutions; electrovacuum; topological methods; Lie groups; computer algebra; symbolical computations; informatics; Internet.
Main publications:
S. I. Tertychniy. The black hole formed by the electromagnetic radiation // Phys. Lett., 96A, 1983, 73–75.
S. ertychniy. On the principles of description of time and space relationships in frames of general relativity. LANL gr-qc/9312010 (1993).
S. I. Tertychniy and I. G. Obukhova. GRGEC: Computer Algebra System for Applications to Gravity Theory, SIGSAM Bulletin 31 n. 1, 119(1997), 6–14.
S. I. Tertychniy. Generalized Alignment of Gravitational Intencities and Electromagnetic Strengths in Kerr–Newman Space–Time. LANL gr-qc/9804028 (1998).
S. I. Tertychniy. On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f(\tau)$ with periodic $f$ // Russian Math. Surveys, 55:1, 186–187.
V. M. Buchstaber, S. I. Tertychnyi, “Categories of Symmetry Groups of the Space of Solutions of the Special Doubly Confluent Heun Equation”, Mat. Zametki, 110:5 (2021), 643–657; Math. Notes, 110:5 (2021), 643–654
2020
2.
V. M. Buchstaber, S. I. Tertychnyi, “Group algebras acting on the space of solutions of a special double
confluent Heun equation”, TMF, 204:2 (2020), 153–170; Theoret. and Math. Phys., 204:2 (2020), 967–983
2019
3.
S. I. Tertychnyi, “Solution space monodromy of a special double confluent Heun equation and its applications”, TMF, 201:1 (2019), 17–36; Theoret. and Math. Phys., 201:1 (2019), 1426–1441
V. M. Buchstaber, S. I. Tertychnyi, “Representations of the Klein Group
Determined by Quadruples of Polynomials
Associated with the Double Confluent Heun Equation”, Mat. Zametki, 103:3 (2018), 346–363; Math. Notes, 103:3 (2018), 357–371
V. M. Buchstaber, S. I. Tertychnyi, “Automorphisms of the solution spaces of special double-confluent Heun equations”, Funktsional. Anal. i Prilozhen., 50:3 (2016), 12–33; Funct. Anal. Appl., 50:3 (2016), 176–192
V. M. Buchstaber, S. I. Tertychnyi, “On a Remarkable Sequence of Bessel Matrices”, Mat. Zametki, 98:5 (2015), 651–663; Math. Notes, 98:5 (2015), 714–724
V. M. Buchstaber, S. I. Tertychnyi, “Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction”, TMF, 182:3 (2015), 373–404; Theoret. and Math. Phys., 182:3 (2015), 329–355
V. M. Buchstaber, S. I. Tertychnyi, “Dynamical systems on a torus with identity Poincaré map which are associated with the Josephson effect”, Uspekhi Mat. Nauk, 69:2(416) (2014), 201–202; Russian Math. Surveys, 69:2 (2014), 383–385
V. M. Buchstaber, S. I. Tertychnyi, “Explicit solution family for the equation of the resistively shunted Josephson junction model”, TMF, 176:2 (2013), 163–188; Theoret. and Math. Phys., 176:2 (2013), 965–986
V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “A system on a torus modelling the dynamics of a Josephson junction”, Uspekhi Mat. Nauk, 67:1(403) (2012), 181–182; Russian Math. Surveys, 67:1 (2012), 178–180
V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “Rotation number quantization effect”, TMF, 162:2 (2010), 254–265; Theoret. and Math. Phys., 162:2 (2010), 211–221
V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “Mathematical models of the dynamics of an overdamped Josephson junction”, Uspekhi Mat. Nauk, 63:3(381) (2008), 155–156; Russian Math. Surveys, 63:3 (2008), 557–559
V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “On properties of the differential equation describing the dynamics of an overdamped Josephson junction”, Uspekhi Mat. Nauk, 59:2(356) (2004), 187–188; Russian Math. Surveys, 59:2 (2004), 377–378
S. I. Tertychnyi, “On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$”, Uspekhi Mat. Nauk, 55:1(331) (2000), 195–196; Russian Math. Surveys, 55:1 (2000), 186–187