Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 201, Number 1, Pages 17–36
DOI: https://doi.org/10.4213/tmf9731
(Mi tmf9731)
 

This article is cited in 3 scientific papers (total in 3 papers)

Solution space monodromy of a special double confluent Heun equation and its applications

S. I. Tertychnyi

All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements, Mendeleevo, Moscow Oblast, Russia
Full-text PDF (609 kB) Citations (3)
References:
Abstract: We consider three linear operators determining automorphisms of the solution space of a special double confluent Heun equation of positive integer order ($\mathcal{L}$-operators). We propose a new method for describing properties of the solution space of this equation based on using eigenfunctions of one of the $\mathcal{L}$-operators, called the universal $\mathcal{L}$-operator. We construct composition laws for $\mathcal{L}$-operators and establish their relation to the monodromy transformation of the solution space of the special double confluent Heun equation. We find four functionals quadratic in eigenfunctions of the universal automorphism; they have a property with respect to the considered equation analogous to the property of the first integral. Based on them, we construct matrix representations of the $\mathcal{L}$-operators and also the monodromy operator. We give a method for extending solutions of the special double confluent Heun equation from the subset $\operatorname{Re} z>0$ of a complex plane to a maximum domain on which the solution exists. As an example of its application to the RSJ model theory of overdamped Josephson junctions, we give the explicit form of the transformation of the phase difference function induced by the monodromy of the solution space of the special double confluent Heun equation and propose a way to continue this function from a half-period interval to any given interval in the domain of the function using only algebraic transformations.
Keywords: double confluent Heun equation, solution space automorphism, monodromy, composition law, matrix representation, solution continuation, RSJ model of Josephson junction.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00192
This research is supported in part by the Russian Foundation for Basic Research (Grant No. 17-01-00192).
Received: 12.04.2019
Revised: 20.05.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 201, Issue 1, Pages 1426–1441
DOI: https://doi.org/10.1134/S0040577919100027
Bibliographic databases:
Document Type: Article
PACS: 74.50.+r
Language: Russian
Citation: S. I. Tertychnyi, “Solution space monodromy of a special double confluent Heun equation and its applications”, TMF, 201:1 (2019), 17–36; Theoret. and Math. Phys., 201:1 (2019), 1426–1441
Citation in format AMSBIB
\Bibitem{Ter19}
\by S.~I.~Tertychnyi
\paper Solution space monodromy of a~special double confluent Heun equation and its applications
\jour TMF
\yr 2019
\vol 201
\issue 1
\pages 17--36
\mathnet{http://mi.mathnet.ru/tmf9731}
\crossref{https://doi.org/10.4213/tmf9731}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017630}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...201.1426T}
\elib{https://elibrary.ru/item.asp?id=41293149}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 201
\issue 1
\pages 1426--1441
\crossref{https://doi.org/10.1134/S0040577919100027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000494479000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074651738}
Linking options:
  • https://www.mathnet.ru/eng/tmf9731
  • https://doi.org/10.4213/tmf9731
  • https://www.mathnet.ru/eng/tmf/v201/i1/p17
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :41
    References:60
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024