Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2016, Volume 50, Issue 3, Pages 12–33
DOI: https://doi.org/10.4213/faa3245
(Mi faa3245)
 

This article is cited in 13 scientific papers (total in 13 papers)

Automorphisms of the solution spaces of special double-confluent Heun equations

V. M. Buchstabera, S. I. Tertychnyib

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b All-Russia Research Institute of Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Mendeleevo, Moscow oblast, Russia
References:
Abstract: Two new linear operators determining automorphisms of the solution space of a special double-confluent Heun equation in the general case are obtained. This equation has two singular points, both of which are irregular. The obtained result is applied to solve the nonlinear equation of the resistively shunted junction model for an overdamped Josephson junction in superconductors. The new operators are explicitly expressed in terms of structural polynomials, for which recursive computational algorithms are constructed. Two functional equations for the solutions of the special double-confluent Heun equation are found.
Keywords: special functions, double-confluent Heun equation, solution space, automorphisms, functional equations.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00506
This work was supported in part by the Russian Foundation for Basic Research, project no. 14-01-00506.
Received: 30.03.2016
English version:
Functional Analysis and Its Applications, 2016, Volume 50, Issue 3, Pages 176–192
DOI: https://doi.org/10.1007/s10688-016-0146-z
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. M. Buchstaber, S. I. Tertychnyi, “Automorphisms of the solution spaces of special double-confluent Heun equations”, Funktsional. Anal. i Prilozhen., 50:3 (2016), 12–33; Funct. Anal. Appl., 50:3 (2016), 176–192
Citation in format AMSBIB
\Bibitem{BucTer16}
\by V.~M.~Buchstaber, S.~I.~Tertychnyi
\paper Automorphisms of the solution spaces of special double-confluent Heun equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2016
\vol 50
\issue 3
\pages 12--33
\mathnet{http://mi.mathnet.ru/faa3245}
\crossref{https://doi.org/10.4213/faa3245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646714}
\zmath{https://zbmath.org/?q=an:06681940}
\elib{https://elibrary.ru/item.asp?id=27349830}
\transl
\jour Funct. Anal. Appl.
\yr 2016
\vol 50
\issue 3
\pages 176--192
\crossref{https://doi.org/10.1007/s10688-016-0146-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384420000002}
\elib{https://elibrary.ru/item.asp?id=27403778}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84988378089}
Linking options:
  • https://www.mathnet.ru/eng/faa3245
  • https://doi.org/10.4213/faa3245
  • https://www.mathnet.ru/eng/faa/v50/i3/p12
  • This publication is cited in the following 13 articles:
    1. Alexey A. Glutsyuk, “Extended Model of Josephson Junction, Linear Systems with Polynomial Solutions, Determinantal Surfaces, and Painlevé III Equations”, Proc. Steklov Inst. Math., 326 (2024), 90–132  mathnet  crossref  crossref
    2. Sergey I. Tertychniy, “Special functions emerging from symmetries of the space of solutions to special double confluent Heun equation”, European Journal of Mathematics, 8:4 (2022), 1623  crossref
    3. Y Bibilo, A A Glutsyuk, “On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation*”, Nonlinearity, 35:10 (2022), 5427  crossref
    4. V. M. Buchstaber, S. I. Tertychnyi, “Categories of Symmetry Groups of the Space of Solutions of the Special Doubly Confluent Heun Equation”, Math. Notes, 110:5 (2021), 643–654  mathnet  crossref  crossref  mathscinet  isi  elib
    5. V. M. Buchstaber, S. I. Tertychnyi, “Group algebras acting on the space of solutions of a special double confluent Heun equation”, Theoret. and Math. Phys., 204:2 (2020), 967–983  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. S. I. Tertychniy, “Square root of the monodromy map associated with the equation of rsj model of Josephson junction”, Results Math., 75:4 (2020), 139  crossref  mathscinet  zmath  isi  scopus
    7. Glutsyuk A.A., Netay I.V., “On Spectral Curves and Complexified Boundaries of the Phase-Lock Areas in a Model of Josephson Junction”, J. Dyn. Control Syst., 26:4 (2020), 785–820  crossref  mathscinet  isi
    8. A. A. Glutsyuk, “On constrictions of phase-lock areas in model of overdamped Josephson effect and transition matrix of the double-confluent Heun equation”, J. Dyn. Control Syst., 25:3 (2019), 323–349  crossref  mathscinet  isi  scopus
    9. A. V. Malyutin, “The Rotation Number Integer Quantization Effect in Braid Groups”, Proc. Steklov Inst. Math., 305 (2019), 182–194  mathnet  crossref  crossref  mathscinet  isi  elib
    10. S. I. Tertychnyi, “Solution space monodromy of a special double confluent Heun equation and its applications”, Theoret. and Math. Phys., 201:1 (2019), 1426–1441  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. S. I. Tertychniy, “Symmetries of the space of solutions to special double confluent Heun equations of integer order”, J. Math. Phys., 60:10 (2019), 103501  crossref  mathscinet  zmath  isi
    12. V. M. Buchstaber, S. I. Tertychnyi, “Representations of the Klein Group Determined by Quadruples of Polynomials Associated with the Double Confluent Heun Equation”, Math. Notes, 103:3 (2018), 357–371  mathnet  crossref  crossref  mathscinet  isi  elib
    13. V. M. Buchstaber, A. A. Glutsyuk, “On monodromy eigenfunctions of Heun equations and boundaries of phase-lock areas in a model of overdamped Josephson effect”, Proc. Steklov Inst. Math., 297 (2017), 50–89  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:627
    Full-text PDF :86
    References:81
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025