Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 1, Pages 186–187
DOI: https://doi.org/10.1070/rm2000v055n01ABEH000261
(Mi rm261)
 

This article is cited in 11 scientific papers (total in 11 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$

S. I. Tertychnyi

All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements
References:
Accepted: 22.12.1999
Bibliographic databases:
Document Type: Article
MSC: 35Q60
Language: English
Original paper language: Russian
Citation: S. I. Tertychnyi, “On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$”, Russian Math. Surveys, 55:1 (2000), 186–187
Citation in format AMSBIB
\Bibitem{Ter00}
\by S.~I.~Tertychnyi
\paper On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a~periodic~$f$
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 1
\pages 186--187
\mathnet{http://mi.mathnet.ru//eng/rm261}
\crossref{https://doi.org/10.1070/rm2000v055n01ABEH000261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751832}
\zmath{https://zbmath.org/?q=an:0957.34048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55..186T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088114800014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034373632}
Linking options:
  • https://www.mathnet.ru/eng/rm261
  • https://doi.org/10.1070/rm2000v055n01ABEH000261
  • https://www.mathnet.ru/eng/rm/v55/i1/p195
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:396
    Russian version PDF:240
    English version PDF:10
    References:76
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024