Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Bragin, Mikhail Dmitrievich

Statistics Math-Net.Ru
Total publications: 30
Scientific articles: 30

Number of views:
This page:544
Abstract pages:6861
Full texts:1687
References:1037
Candidate of physico-mathematical sciences (2017)
Speciality: 01.01.07 (Computing mathematics)

https://www.mathnet.ru/eng/person83117
List of publications on Google Scholar
List of publications on ZentralBlatt
https://elibrary.ru/author_items.asp?authorid=712762

Publications in Math-Net.Ru Citations
2024
1. M. D. Bragin, “Numerical modeling of compressible mixing layers with a bicompact scheme”, Matem. Mod., 36:2 (2024),  3–24  mathnet; Math. Models Comput. Simul., 16:4 (2024), 521–535
2023
2. M. D. Bragin, “Bicompact Schemes for Compressible Navier–Stokes Equations”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023),  17–22  mathnet  elib; Dokl. Math., 107:1 (2023), 12–16 3
3. M. D. Bragin, S. Yu. Gus'kov, N. V. Zmitrenko, P. A. Kuchugov, I. G. Lebo, E. V. Levkina, N. V. Nevmerzhitskiy, O. G. Sin'kova, V. P. Statsenko, V. F. Tishkin, I. R. Farin, Yu. V. Yanilkin, R. A. Yakhin, “Experimental and numerical investigation of the dynamics of development of Rayleigh–Taylor instability at Atwood numbers close to unity”, Matem. Mod., 35:1 (2023),  59–82  mathnet  mathscinet; Math. Models Comput. Simul., 15:4 (2023), 660–676
2022
4. M. D. Bragin, “Implicit-explicit bicompact schemes for hyperbolic systems of conservation laws”, Matem. Mod., 34:6 (2022),  3–21  mathnet  mathscinet; Math. Models Comput. Simul., 15:1 (2023), 1–12 2
5. M. D. Bragin, O. A. Kovyrkina, M. E. Ladonkina, V. V. Ostapenko, V. F. Tishkin, N. A. Khandeeva, “Combined numerical schemes”, Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022),  1763–1803  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 62:11 (2022), 1743–1781 5
6. M. D. Bragin, “Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor–Green vortex problem”, Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022),  625–641  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 62:4 (2022), 608–623  scopus 4
2021
7. M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Entropic regularization of the discontinuous Galerkin method in conservative variables for two-dimensional Euler equations”, Matem. Mod., 33:12 (2021),  49–66  mathnet; Math. Models Comput. Simul., 14:4 (2022), 578–589 3
8. M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Entropy stable discontinuous Galerkin method for two-dimensional Euler equations”, Matem. Mod., 33:2 (2021),  125–140  mathnet; Math. Models Comput. Simul., 13:5 (2021), 897–906 6
9. M. D. Bragin, B. V. Rogov, “Accuracy of bicompact schemes in the problem of Taylor–Green vortex decay”, Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021),  1759–1778  mathnet  elib; Comput. Math. Math. Phys., 61:11 (2021), 1723–1742  isi  scopus 5
10. M. D. Bragin, B. V. Rogov, “Bicompact schemes for the multidimensional convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 61:4 (2021),  625–643  mathnet  elib; Comput. Math. Math. Phys., 61:4 (2021), 607–624  isi  scopus 4
2020
11. M. D. Bragin, B. V. Rogov, “Bicompact schemes for gas dynamics problems: introducing complex domains using the free boundary method”, Computer Research and Modeling, 12:3 (2020),  487–504  mathnet 2
12. M. D. Bragin, B. V. Rogov, “Combined multidimensional bicompact scheme with higher order accuracy in domains of influence of nonstationary shock waves”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020),  9–13  mathnet  zmath  elib; Dokl. Math., 102:2 (2020), 360–363 2
13. M. D. Bragin, B. V. Rogov, “Combined monotone bicompact scheme of higher order accuracy in domains of influence of nonstationary shock waves”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  79–84  mathnet  zmath  elib; Dokl. Math., 101:3 (2020), 239–243 6
14. M. D. Bragin, “Entropy stability of bicompact schemes in gas dynamics problems”, Matem. Mod., 32:11 (2020),  114–128  mathnet; Math. Models Comput. Simul., 13:4 (2021), 613–622 1
15. M. D. Bragin, B. V. Rogov, “High-order bicompact schemes for numerical modelling of multispecies multi-reaction gas flows”, Matem. Mod., 32:6 (2020),  21–36  mathnet; Math. Models Comput. Simul., 13:1 (2021), 106–115 4
16. M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Discontinuous Galerkin method with entropic slope limiter for Euler equations”, Matem. Mod., 32:2 (2020),  113–128  mathnet; Math. Models Comput. Simul., 12:5 (2020), 824–833 8
17. M. D. Bragin, B. V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves”, Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020),  884–899  mathnet  elib; Comput. Math. Math. Phys., 60:5 (2020), 864–878  isi  scopus 8
2019
18. M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Ensuring the entropy stability of the discontinuous Galerkin method in gas-dynamics problems”, Keldysh Institute preprints, 2019, 051, 22 pp.  mathnet  elib 7
19. M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute preprints, 2019, 018, 25 pp.  mathnet  elib 10
20. M. D. Bragin, B. V. Rogov, “Bicompact schemes for multidimensional hyperbolic equations on Cartesian meshes with solution-based AMR”, Keldysh Institute preprints, 2019, 011, 27 pp.  mathnet  elib 1
21. M. D. Bragin, B. V. Rogov, “A conservative limiting method for bicompact schemes”, Keldysh Institute preprints, 2019, 008, 26 pp.  mathnet  elib 8
22. M. D. Bragin, G. A. Tirskii, “Analytical solution of equations of the physical theory of meteors for a non-fragmenting body with ablation in a nonisothermal atmosphere”, Prikl. Mekh. Tekh. Fiz., 60:5 (2019),  13–18  mathnet  elib; J. Appl. Mech. Tech. Phys., 60:5 (2019), 793–797 2
23. M. D. Bragin, B. V. Rogov, “High-order bicompact schemes for shock-capturing computations of detonation waves”, Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019),  1381–1391  mathnet  elib; Comput. Math. Math. Phys., 59:8 (2019), 1314–1323  isi  scopus 2
2018
24. B. V. Rogov, M. D. Bragin, “On the convergence of the method of iterative approximate factorization of difference operators of high-order accurate bicompact scheme for nonstationary three-dimensional hyperbolic equations”, Keldysh Institute preprints, 2018, 132, 16 pp.  mathnet  elib 3
25. M. D. Bragin, B. V. Rogov, “Iterative approximate factorization of difference operators of high-order accurate bicompact schemes for multidimensional nonhomogeneous quasilinear hyperbolic systems”, Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018),  313–325  mathnet  elib; Comput. Math. Math. Phys., 58:3 (2018), 295–306  isi  scopus 13
2016
26. M. D. Bragin, B. V. Rogov, “A new hybrid scheme for computing discontinuous solutions of hyperbolic equations”, Keldysh Institute preprints, 2016, 022, 22 pp.  mathnet 2
27. M. D. Bragin, B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016),  958–972  mathnet  elib; Comput. Math. Math. Phys., 56:6 (2016), 947–961  isi  scopus 24
2015
28. M. D. Bragin, B. V. Rogov, “Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015),  1196–1207  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 55:7 (2015), 1177–1187  isi  elib  scopus 2
2014
29. M. D. Bragin, B. V. Rogov, “Uniqueness of a high-order accurate bicompact scheme for quasilinear hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014),  815–820  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 54:5 (2014), 831–836  isi  elib  scopus 3
2013
30. M. D. Bragin, A. V. Ivanov, “The locally adaptive choise of time step in molecular dynamics' problems”, Keldysh Institute preprints, 2013, 062, 39 pp.  mathnet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024