|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
M. D. Bragin, “Numerical modeling of compressible mixing layers with a bicompact scheme”, Matem. Mod., 36:2 (2024), 3–24 ; Math. Models Comput. Simul., 16:4 (2024), 521–535 |
|
2023 |
2. |
M. D. Bragin, “Bicompact Schemes for Compressible Navier–Stokes Equations”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 17–22 ; Dokl. Math., 107:1 (2023), 12–16 |
3
|
3. |
M. D. Bragin, S. Yu. Gus'kov, N. V. Zmitrenko, P. A. Kuchugov, I. G. Lebo, E. V. Levkina, N. V. Nevmerzhitskiy, O. G. Sin'kova, V. P. Statsenko, V. F. Tishkin, I. R. Farin, Yu. V. Yanilkin, R. A. Yakhin, “Experimental and numerical investigation of the dynamics of development of Rayleigh–Taylor instability at Atwood numbers close to unity”, Matem. Mod., 35:1 (2023), 59–82 ; Math. Models Comput. Simul., 15:4 (2023), 660–676 |
|
2022 |
4. |
M. D. Bragin, “Implicit-explicit bicompact schemes for hyperbolic systems of conservation laws”, Matem. Mod., 34:6 (2022), 3–21 ; Math. Models Comput. Simul., 15:1 (2023), 1–12 |
2
|
5. |
M. D. Bragin, O. A. Kovyrkina, M. E. Ladonkina, V. V. Ostapenko, V. F. Tishkin, N. A. Khandeeva, “Combined numerical schemes”, Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022), 1763–1803 ; Comput. Math. Math. Phys., 62:11 (2022), 1743–1781 |
5
|
6. |
M. D. Bragin, “Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor–Green vortex problem”, Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022), 625–641 ; Comput. Math. Math. Phys., 62:4 (2022), 608–623 |
4
|
|
2021 |
7. |
M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Entropic regularization of the discontinuous Galerkin method in conservative variables for two-dimensional Euler equations”, Matem. Mod., 33:12 (2021), 49–66 ; Math. Models Comput. Simul., 14:4 (2022), 578–589 |
3
|
8. |
M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Entropy stable discontinuous Galerkin method for two-dimensional Euler equations”, Matem. Mod., 33:2 (2021), 125–140 ; Math. Models Comput. Simul., 13:5 (2021), 897–906 |
6
|
9. |
M. D. Bragin, B. V. Rogov, “Accuracy of bicompact schemes in the problem of Taylor–Green vortex decay”, Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021), 1759–1778 ; Comput. Math. Math. Phys., 61:11 (2021), 1723–1742 |
5
|
10. |
M. D. Bragin, B. V. Rogov, “Bicompact schemes for the multidimensional convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 61:4 (2021), 625–643 ; Comput. Math. Math. Phys., 61:4 (2021), 607–624 |
4
|
|
2020 |
11. |
M. D. Bragin, B. V. Rogov, “Bicompact schemes for gas dynamics problems: introducing complex domains using the free boundary method”, Computer Research and Modeling, 12:3 (2020), 487–504 |
2
|
12. |
M. D. Bragin, B. V. Rogov, “Combined multidimensional bicompact scheme with higher order accuracy in domains of influence of nonstationary shock waves”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 9–13 ; Dokl. Math., 102:2 (2020), 360–363 |
2
|
13. |
M. D. Bragin, B. V. Rogov, “Combined monotone bicompact scheme of higher order accuracy in domains of influence of nonstationary shock waves”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 79–84 ; Dokl. Math., 101:3 (2020), 239–243 |
6
|
14. |
M. D. Bragin, “Entropy stability of bicompact schemes in gas dynamics problems”, Matem. Mod., 32:11 (2020), 114–128 ; Math. Models Comput. Simul., 13:4 (2021), 613–622 |
1
|
15. |
M. D. Bragin, B. V. Rogov, “High-order bicompact schemes for numerical modelling of multispecies multi-reaction gas flows”, Matem. Mod., 32:6 (2020), 21–36 ; Math. Models Comput. Simul., 13:1 (2021), 106–115 |
4
|
16. |
M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Discontinuous Galerkin method with entropic slope limiter for Euler equations”, Matem. Mod., 32:2 (2020), 113–128 ; Math. Models Comput. Simul., 12:5 (2020), 824–833 |
8
|
17. |
M. D. Bragin, B. V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves”, Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020), 884–899 ; Comput. Math. Math. Phys., 60:5 (2020), 864–878 |
8
|
|
2019 |
18. |
M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Ensuring the entropy stability of the discontinuous Galerkin method in gas-dynamics problems”, Keldysh Institute preprints, 2019, 051, 22 pp. |
7
|
19. |
M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute preprints, 2019, 018, 25 pp. |
10
|
20. |
M. D. Bragin, B. V. Rogov, “Bicompact schemes for multidimensional hyperbolic equations on Cartesian meshes with solution-based AMR”, Keldysh Institute preprints, 2019, 011, 27 pp. |
1
|
21. |
M. D. Bragin, B. V. Rogov, “A conservative limiting method for bicompact schemes”, Keldysh Institute preprints, 2019, 008, 26 pp. |
8
|
22. |
M. D. Bragin, G. A. Tirskii, “Analytical solution of equations of the physical theory of meteors for a non-fragmenting body with ablation in a nonisothermal atmosphere”, Prikl. Mekh. Tekh. Fiz., 60:5 (2019), 13–18 ; J. Appl. Mech. Tech. Phys., 60:5 (2019), 793–797 |
2
|
23. |
M. D. Bragin, B. V. Rogov, “High-order bicompact schemes for shock-capturing computations of detonation waves”, Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019), 1381–1391 ; Comput. Math. Math. Phys., 59:8 (2019), 1314–1323 |
2
|
|
2018 |
24. |
B. V. Rogov, M. D. Bragin, “On the convergence of the method of iterative approximate factorization of difference operators of high-order accurate bicompact scheme for nonstationary three-dimensional hyperbolic equations”, Keldysh Institute preprints, 2018, 132, 16 pp. |
3
|
25. |
M. D. Bragin, B. V. Rogov, “Iterative approximate factorization of difference operators of high-order accurate bicompact schemes for multidimensional nonhomogeneous quasilinear hyperbolic systems”, Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018), 313–325 ; Comput. Math. Math. Phys., 58:3 (2018), 295–306 |
13
|
|
2016 |
26. |
M. D. Bragin, B. V. Rogov, “A new hybrid scheme for computing discontinuous solutions of hyperbolic equations”, Keldysh Institute preprints, 2016, 022, 22 pp. |
2
|
27. |
M. D. Bragin, B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016), 958–972 ; Comput. Math. Math. Phys., 56:6 (2016), 947–961 |
24
|
|
2015 |
28. |
M. D. Bragin, B. V. Rogov, “Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015), 1196–1207 ; Comput. Math. Math. Phys., 55:7 (2015), 1177–1187 |
2
|
|
2014 |
29. |
M. D. Bragin, B. V. Rogov, “Uniqueness of a high-order accurate bicompact scheme for quasilinear hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014), 815–820 ; Comput. Math. Math. Phys., 54:5 (2014), 831–836 |
3
|
|
2013 |
30. |
M. D. Bragin, A. V. Ivanov, “The locally adaptive choise of time step in molecular dynamics' problems”, Keldysh Institute preprints, 2013, 062, 39 pp. |
|
Organisations |
|
|
|
|