Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 7, Pages 1196–1207
DOI: https://doi.org/10.7868/S0044466915070042
(Mi zvmmf10237)
 

This article is cited in 2 scientific papers (total in 2 papers)

Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations

M. D. Bragina, B. V. Rogovab

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia
b Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia
Full-text PDF (500 kB) Citations (2)
References:
Abstract: New hybrid difference schemes are proposed for computing discontinuous solutions of hyperbolic equations. Involved in these schemes, a bicompact scheme that is third-order accurate in time and fourth-order accurate in space is monotonized using several partner schemes, namely, a first-order accurate explicit upwind scheme and two bicompact schemes of second and fourth orders of accuracy in space, both of the first order of accuracy in time. Their total domain of monotonicity covers all Courant numbers. An algorithm for automatically choosing the most suitable partner scheme is constructed. The mechanism of switching between high- and low-order accurate schemes is rigorously substantiated. All the schemes used can be efficiently implemented by applying the running calculation method. The hybrid schemes proposed have been tested on a model two-dimensional explosion problem in an ideal gas.
Key words: hyperbolic equations, discontinuous solutions, hybrid schemes, high-order accurate compact and bicompact schemes, numerical solution of explosion problem in ideal gas.
Received: 16.06.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 7, Pages 1177–1187
DOI: https://doi.org/10.1134/S0965542515070040
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: M. D. Bragin, B. V. Rogov, “Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015), 1196–1207; Comput. Math. Math. Phys., 55:7 (2015), 1177–1187
Citation in format AMSBIB
\Bibitem{BraRog15}
\by M.~D.~Bragin, B.~V.~Rogov
\paper Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 7
\pages 1196--1207
\mathnet{http://mi.mathnet.ru/zvmmf10237}
\crossref{https://doi.org/10.7868/S0044466915070042}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3372639}
\elib{https://elibrary.ru/item.asp?id=23661502}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 7
\pages 1177--1187
\crossref{https://doi.org/10.1134/S0965542515070040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358644300009}
\elib{https://elibrary.ru/item.asp?id=23993555}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938068760}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10237
  • https://www.mathnet.ru/eng/zvmmf/v55/i7/p1196
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024