Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 4, Pages 625–641
DOI: https://doi.org/10.31857/S0044466922040032
(Mi zvmmf11386)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical physics

Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor–Green vortex problem

M. D. Bragin

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Citations (4)
Abstract: For the three-dimensional Euler equations, a locally one-dimensional bicompact scheme having the fourth order of approximation in space and the second order of approximation in time is considered. The scheme is used in the Taylor–Green vortex problem in an inviscid perfect gas to examine the degree to which a conservative limiting (monotonization) method applied to bicompact schemes affects their theoretically high spectral resolution. Two parallel computational algorithms for locally one-dimensional bicompact schemes are proposed. One of them is used for carrying out computations. It is shown that, in the case of monotonization, the chosen bicompact scheme resolves 70–85% of the kinetic energy spectrum of the fluid. The scheme is compared with high-order accurate WENO$_5$ schemes in terms of the behavior of kinetic energy and enstrophy. It is demonstrated that the bicompact scheme has noticeably lower dissipation and more weakly suppresses medium-scale eddies.
Key words: Euler equations, Taylor–Green vortex, high-order accurate schemes, implicit schemes, compact schemes, bicompact schemes, parallel algorithms.
Funding agency Grant number
Russian Science Foundation 21-11-00198
This work was supported by the Russian Science Foundation, project no. 21-11-00198.
Received: 28.06.2021
Revised: 29.08.2021
Accepted: 16.12.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 4, Pages 608–623
DOI: https://doi.org/10.1134/S0965542522040030
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. D. Bragin, “Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor–Green vortex problem”, Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022), 625–641; Comput. Math. Math. Phys., 62:4 (2022), 608–623
Citation in format AMSBIB
\Bibitem{Bra22}
\by M.~D.~Bragin
\paper Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor--Green vortex problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 4
\pages 625--641
\mathnet{http://mi.mathnet.ru/zvmmf11386}
\crossref{https://doi.org/10.31857/S0044466922040032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4431089}
\elib{https://elibrary.ru/item.asp?id=48340798}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 4
\pages 608--623
\crossref{https://doi.org/10.1134/S0965542522040030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85130810190}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11386
  • https://www.mathnet.ru/eng/zvmmf/v62/i4/p625
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025