Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 5, Pages 884–899
DOI: https://doi.org/10.31857/S0044466920050063
(Mi zvmmf11083)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the accuracy of bicompact schemes as applied to computation of unsteady shock waves

M. D. Braginabc, B. V. Rogovab

a Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, 141700 Russia
c Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
Citations (9)
References:
Abstract: Bicompact schemes that have the fourth order of classical approximation in space and a higher order (at least the second) in time are considered. Their accuracy is studied as applied to a quasilinear hyperbolic system of conservation laws with discontinuous solutions involving shock waves with variable propagation velocities. The shallow water equations are used as an example of such a system. It is shown that a nonmonotone bicompact scheme has a higher order of convergence in domains of influence of unsteady shock waves. If spurious oscillations are suppressed by applying a conservative limiting procedure, then the bicompact scheme, though being high-order accurate on smooth solutions, has a reduced (first) order of convergence in the domains of influence of shock waves.
Key words: hyperbolic system of conservation laws, bicompact schemes, shallow water equations, orders of local and integral convergence.
Funding agency Grant number
Russian Science Foundation 16-11-10033
This work was supported by the Russian Science Foundation, grant no. 16-11-10033.
Received: 02.09.2019
Revised: 02.09.2019
Accepted: 14.01.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 5, Pages 864–878
DOI: https://doi.org/10.1134/S0965542520050061
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. D. Bragin, B. V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves”, Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020), 884–899; Comput. Math. Math. Phys., 60:5 (2020), 864–878
Citation in format AMSBIB
\Bibitem{BraRog20}
\by M.~D.~Bragin, B.~V.~Rogov
\paper On the accuracy of bicompact schemes as applied to computation of unsteady shock waves
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 5
\pages 884--899
\mathnet{http://mi.mathnet.ru/zvmmf11083}
\crossref{https://doi.org/10.31857/S0044466920050063}
\elib{https://elibrary.ru/item.asp?id=42687709}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 5
\pages 864--878
\crossref{https://doi.org/10.1134/S0965542520050061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000544378300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087220450}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11083
  • https://www.mathnet.ru/eng/zvmmf/v60/i5/p884
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:117
    References:22
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025