|
|
Publications in Math-Net.Ru |
Citations |
|
2022 |
1. |
Yu. G. Smirnov, E. Yu. Smol'kin, “On the existence of nonlinear coupled surface TE- and leaky TM-electromagnetic waves in a circular cylindrical waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2022, no. 1, 13–27 |
|
2021 |
2. |
E. Yu. Smol'kin, M. O. Snegur, “The method of operator beams and operator functions in the problem of normal waves of a closed regular inhomogeneous dielectric waveguide of arbitrary cross section”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 2, 77–89 |
3. |
E. Yu. Smol'kin, V. Yu. Martynova, “Numerical method for solving the problem of TE-waves in the Goubau line”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 2, 63–76 |
4. |
Yu. G. Smirnov, E. Yu. Smol'kin, “Problem research of an open circular waveguide normal waves with an inhomogeneous chiral layer”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 1, 85–101 |
5. |
E. Yu. Smol'kin, M. O. Snegur, “Numerical investigation of the TE-polarized complex electromagnetic waves in an open nonhomogeneous layer”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 1, 10–19 |
6. |
Yu. G. Smirnov, E. Yu. Smol'kin, M. O. Snegur, “Numerical study of propagation of nonlinear coupled surface and leaky electromagnetic waves in a circular cylindrical metal–dielectric waveguide”, Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021), 1378–1389 ; Comput. Math. Math. Phys., 61:8 (2021), 1353–1363 |
3
|
|
2020 |
7. |
Yu. G. Smirnov, E. Yu. Smol'kin, “On the existence of an infinite number of leaky complex waves in a dielectric layer”, Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020), 63–66 ; Dokl. Math., 101:1 (2020), 53–56 |
2
|
8. |
A. O. Lapich, E. Yu. Smol'kin, A. S. Shutkov, M. O. Snegur, “A numerical method for solving the problem of propagation of outleting TE-polarized waves in a multilayer circular waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2020, no. 3, 114–126 |
|
2019 |
9. |
E. Yu. Smol'kin, M. O. Snegur, A. O. Lapich, L. Yu. Gamayunova, “The study of nonlinear eigenvalue problems for the Maxwell equation system describing the propagation of electromagnetic waves in regular nonuniform shielded (closed) waveguide structures of circular cross section”, University proceedings. Volga region. Physical and mathematical sciences, 2019, no. 3, 36–46 |
10. |
V. Yu. Kurseeva, Yu. G. Smirnov, E. Yu. Smol'kin, “On the solvability of the problem of electromagnetic wave diffraction by a layer filled with a nonlinear medium”, Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019), 684–698 ; Comput. Math. Math. Phys., 59:4 (2019), 644–658 |
|
2018 |
11. |
E. Yu. Smol'kin, M. O. Snegur, “The method of operator functions in the problem of normal waves of an anisotropic screened waveguide of arbitrary section”, University proceedings. Volga region. Physical and mathematical sciences, 2018, no. 3, 52–63 |
12. |
E. Yu. Smol'kin, M. O. Snegur, “A numerical research of a proper wave spectrum of an anisotropic dielectric waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2018, no. 1, 72–82 |
13. |
Yu. G. Smirnov, E. Yu. Smolkin, M. O. Snegur, “Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1955–1970 ; Comput. Math. Math. Phys., 58:11 (2018), 1887–1901 |
16
|
|
2017 |
14. |
E. Yu. Smol'kin, M. O. Snegur, E. A. Khorosheva, “A numerical research of the range of normal modes of an open inhomogeneous waveguide with circular cross-section”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 4, 76–86 |
1
|
15. |
Yu. G. Smirnov, E. Yu. Smol'kin, M. O. Snegur, “On spectrum's discrete nature in the problem of azimuthal symmetrical waves of an open nonhomogeneous anisotropic waveguide with longitudinal magnetization”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 3, 50–64 |
2
|
16. |
E. Yu. Smol'kin, M. O. Snegur, “A numerical method to solve the electromagnetic wave propagation problem in a cylindrical anisotropic inhomogeneous waveguide with longitudinal magnetization”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 2, 32–43 |
2
|
17. |
D. V. Valovik, E. Yu. Smol'kin, “Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide”, Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017), 1304–1320 ; Comput. Math. Math. Phys., 57:8 (2017), 1294–1309 |
6
|
|
2016 |
18. |
R. O. Evstigneev, M. Yu. Medvedik, E. Yu. Smol'kin, “Comparison of numerical methods for solving integral-differential equation of electromagnetic field”, University proceedings. Volga region. Physical and mathematical sciences, 2016, no. 1, 3–12 |
|
2014 |
19. |
E. D. Derevyanchyk, E. Yu. Smol'kin, A. A. Tsupak, “The Galerkin method for solving the scalar problem of scattering by an obstacle of complex shape”, University proceedings. Volga region. Physical and mathematical sciences, 2014, no. 4, 57–68 |
2
|
|
2013 |
20. |
D. V. Valovik, Yu. G. Smirnov, E. Yu. Smol'kin, “Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013), 1150–1161 ; Comput. Math. Math. Phys., 53:7 (2013), 973–983 |
18
|
|
2012 |
21. |
E. Yu. Smol'kin, “The Cauchy problem method for solving the nonlinear eigenvalue conjugation problem for TM waves propagating in a circular two-layer dielectric waveguide with Kerr nonlinearity”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 4, 49–58 |
22. |
D. V. Valovik, E. Yu. Smol'kin, “Numerical solution of the problem of propagation of electromagnetic TM waves in a circular dielectric waveguide filled with a nonlinear medium”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 3, 29–37 |
2
|
|
Organisations |
|
|
|
|