Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Smol'kin, Eugene Yur'evich

Statistics Math-Net.Ru
Total publications: 22
Scientific articles: 22

Number of views:
This page:2494
Abstract pages:1841
Full texts:461
References:510
Associate professor
Candidate of physico-mathematical sciences (2014)
Speciality: 05.13.18 (Mathematical modeling, numerical methods, and the program systems)
E-mail:
Website: https://lk.pnzgu.ru/portfolio/122397008

https://www.mathnet.ru/eng/person81567
List of publications on Google Scholar
List of publications on ZentralBlatt
https://elibrary.ru/author_items.asp?authorid=695252

Publications in Math-Net.Ru Citations
2022
1. Yu. G. Smirnov, E. Yu. Smol'kin, “On the existence of nonlinear coupled surface TE- and leaky TM-electromagnetic waves in a circular cylindrical waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2022, no. 1,  13–27  mathnet
2021
2. E. Yu. Smol'kin, M. O. Snegur, “The method of operator beams and operator functions in the problem of normal waves of a closed regular inhomogeneous dielectric waveguide of arbitrary cross section”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 2,  77–89  mathnet
3. E. Yu. Smol'kin, V. Yu. Martynova, “Numerical method for solving the problem of TE-waves in the Goubau line”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 2,  63–76  mathnet
4. Yu. G. Smirnov, E. Yu. Smol'kin, “Problem research of an open circular waveguide normal waves with an inhomogeneous chiral layer”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 1,  85–101  mathnet
5. E. Yu. Smol'kin, M. O. Snegur, “Numerical investigation of the TE-polarized complex electromagnetic waves in an open nonhomogeneous layer”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 1,  10–19  mathnet
6. Yu. G. Smirnov, E. Yu. Smol'kin, M. O. Snegur, “Numerical study of propagation of nonlinear coupled surface and leaky electromagnetic waves in a circular cylindrical metal–dielectric waveguide”, Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021),  1378–1389  mathnet  elib; Comput. Math. Math. Phys., 61:8 (2021), 1353–1363  isi  scopus 3
2020
7. Yu. G. Smirnov, E. Yu. Smol'kin, “On the existence of an infinite number of leaky complex waves in a dielectric layer”, Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  63–66  mathnet  zmath  elib; Dokl. Math., 101:1 (2020), 53–56 2
8. A. O. Lapich, E. Yu. Smol'kin, A. S. Shutkov, M. O. Snegur, “A numerical method for solving the problem of propagation of outleting TE-polarized waves in a multilayer circular waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2020, no. 3,  114–126  mathnet
2019
9. E. Yu. Smol'kin, M. O. Snegur, A. O. Lapich, L. Yu. Gamayunova, “The study of nonlinear eigenvalue problems for the Maxwell equation system describing the propagation of electromagnetic waves in regular nonuniform shielded (closed) waveguide structures of circular cross section”, University proceedings. Volga region. Physical and mathematical sciences, 2019, no. 3,  36–46  mathnet
10. V. Yu. Kurseeva, Yu. G. Smirnov, E. Yu. Smol'kin, “On the solvability of the problem of electromagnetic wave diffraction by a layer filled with a nonlinear medium”, Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019),  684–698  mathnet  elib; Comput. Math. Math. Phys., 59:4 (2019), 644–658  isi  scopus
2018
11. E. Yu. Smol'kin, M. O. Snegur, “The method of operator functions in the problem of normal waves of an anisotropic screened waveguide of arbitrary section”, University proceedings. Volga region. Physical and mathematical sciences, 2018, no. 3,  52–63  mathnet
12. E. Yu. Smol'kin, M. O. Snegur, “A numerical research of a proper wave spectrum of an anisotropic dielectric waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2018, no. 1,  72–82  mathnet
13. Yu. G. Smirnov, E. Yu. Smolkin, M. O. Snegur, “Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018),  1955–1970  mathnet  elib; Comput. Math. Math. Phys., 58:11 (2018), 1887–1901  isi  scopus 16
2017
14. E. Yu. Smol'kin, M. O. Snegur, E. A. Khorosheva, “A numerical research of the range of normal modes of an open inhomogeneous waveguide with circular cross-section”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 4,  76–86  mathnet 1
15. Yu. G. Smirnov, E. Yu. Smol'kin, M. O. Snegur, “On spectrum's discrete nature in the problem of azimuthal symmetrical waves of an open nonhomogeneous anisotropic waveguide with longitudinal magnetization”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 3,  50–64  mathnet 2
16. E. Yu. Smol'kin, M. O. Snegur, “A numerical method to solve the electromagnetic wave propagation problem in a cylindrical anisotropic inhomogeneous waveguide with longitudinal magnetization”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 2,  32–43  mathnet 2
17. D. V. Valovik, E. Yu. Smol'kin, “Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide”, Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1304–1320  mathnet  elib; Comput. Math. Math. Phys., 57:8 (2017), 1294–1309  isi  scopus 6
2016
18. R. O. Evstigneev, M. Yu. Medvedik, E. Yu. Smol'kin, “Comparison of numerical methods for solving integral-differential equation of electromagnetic field”, University proceedings. Volga region. Physical and mathematical sciences, 2016, no. 1,  3–12  mathnet
2014
19. E. D. Derevyanchyk, E. Yu. Smol'kin, A. A. Tsupak, “The Galerkin method for solving the scalar problem of scattering by an obstacle of complex shape”, University proceedings. Volga region. Physical and mathematical sciences, 2014, no. 4,  57–68  mathnet 2
2013
20. D. V. Valovik, Yu. G. Smirnov, E. Yu. Smol'kin, “Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013),  1150–1161  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 53:7 (2013), 973–983  isi  elib  scopus 18
2012
21. E. Yu. Smol'kin, “The Cauchy problem method for solving the nonlinear eigenvalue conjugation problem for TM waves propagating in a circular two-layer dielectric waveguide with Kerr nonlinearity”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 4,  49–58  mathnet
22. D. V. Valovik, E. Yu. Smol'kin, “Numerical solution of the problem of propagation of electromagnetic TM waves in a circular dielectric waveguide filled with a nonlinear medium”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 3,  29–37  mathnet 2

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024