Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 11, Pages 1955–1970
DOI: https://doi.org/10.31857/S004446690003545-0
(Mi zvmmf10849)
 

This article is cited in 16 scientific papers (total in 16 papers)

Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization

Yu. G. Smirnov, E. Yu. Smolkin, M. O. Snegur

Penza State University, Penza, Russia
Citations (16)
References:
Abstract: An eigenvalue problem for the normal waves of an inhomogeneous regular waveguide is considered. The problem reduces to the boundary value problem for the tangential components of the electromagnetic field in the Sobolev spaces. The inhomogeneity of the dielectric filler and the presence of the spectral parameter in the field-matching conditions necessitate giving a special definition of the solution to the problem. To define the solution, the variational formulation of the problem is used. The variational problem reduces to the study of an operator function nonlinearly depending on the spectral parameter. The properties of the operator function, necessary for the analysis of its spectral properties, are investigated. Theorems on the discreteness of the spectrum and on the distribution of the characteristic numbers of the operator function on the complex plane are proved. Real propagation constants are calculated. Numerical results are obtained using the Galerkin method. The numerical method proposed is implemented in a computer code. Calculations for a number of specific waveguiding structures are performed.
Key words: nonlinear eigenvalue problem, Maxwell's equations, operator function, spectrum, numerical method.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.894.2017/4.6
Received: 25.10.2017
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 11, Pages 1887–1901
DOI: https://doi.org/10.1134/S096554251811012X
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: Yu. G. Smirnov, E. Yu. Smolkin, M. O. Snegur, “Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1955–1970; Comput. Math. Math. Phys., 58:11 (2018), 1887–1901
Citation in format AMSBIB
\Bibitem{SmiSmoSne18}
\by Yu.~G.~Smirnov, E.~Yu.~Smolkin, M.~O.~Snegur
\paper Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 11
\pages 1955--1970
\mathnet{http://mi.mathnet.ru/zvmmf10849}
\crossref{https://doi.org/10.31857/S004446690003545-0}
\elib{https://elibrary.ru/item.asp?id=38641653}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 11
\pages 1887--1901
\crossref{https://doi.org/10.1134/S096554251811012X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452301900016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058856995}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10849
  • https://www.mathnet.ru/eng/zvmmf/v58/i11/p1955
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:252
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024