Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Totieva, Zhanna Dmitrievna

Statistics Math-Net.Ru
Total publications: 19
Scientific articles: 18
Presentations: 1

Number of views:
This page:1201
Abstract pages:5403
Full texts:1581
References:768
Associate professor
Candidate of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person73871
List of publications on Google Scholar
List of publications on ZentralBlatt
https://orcid.org/0000-0002-0089-074X

Publications in Math-Net.Ru Citations
2024
1. M. R. Tomaev, Zh. D. Totieva, “An inverse two-dimensional problem for determining two unknowns in equation of memory type for a weakly horizontally inhomogeneous medium”, Vladikavkaz. Mat. Zh., 26:3 (2024),  112–134  mathnet
2022
2. Durdimurod K. Durdiev, Zhanna D. Totieva, “Determination of non-stationary potential analytical with respect to spatial variables”, J. Sib. Fed. Univ. Math. Phys., 15:5 (2022),  565–576  mathnet
3. D. K. Durdiev, Zh. D. Totieva, “Determination of a non-stationary adsorption coefficient analytical in part of spatial variables”, Mat. Tr., 25:2 (2022),  88–106  mathnet; Siberian Adv. Math., 33:1 (2023), 1–14
4. Zh. D. Totieva, “Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium”, TMF, 213:2 (2022),  193–213  mathnet  mathscinet; Theoret. and Math. Phys., 213:2 (2022), 1477–1494  scopus 1
2021
5. D. K. Durdiev, Zh. D. Totieva, “About global solvability of a multidimensional inverse problem for an equation with memory”, Sibirsk. Mat. Zh., 62:2 (2021),  269–285  mathnet  elib; Siberian Math. J., 62:2 (2021), 215–229  isi  scopus 12
6. Z. A. Akhmatov, Zh. D. Totieva, “Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory”, Vladikavkaz. Mat. Zh., 23:4 (2021),  15–27  mathnet 3
7. Zh. D. Totieva, “Linearized two-dimensional inverse problem of determining the kernel of the viscoelasticity equation”, Vladikavkaz. Mat. Zh., 23:2 (2021),  87–103  mathnet 1
2020
8. D. K. Durdiev, Zh. D. Totieva, “Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives”, Sib. Èlektron. Mat. Izv., 17 (2020),  1106–1127  mathnet  isi 5
9. Zh. D. Totieva, “Determining the kernel of the viscoelasticity equation in a medium with slightly horizontal homogeneity”, Sibirsk. Mat. Zh., 61:2 (2020),  453–475  mathnet  elib; Siberian Math. J., 61:2 (2020), 359–378  isi  scopus 3
2019
10. Zh. D. Totieva, “One-dimensional inverse coefficient problems of anisotropic viscoelasticity”, Sib. Èlektron. Mat. Izv., 16 (2019),  786–811  mathnet 3
11. Zh. D. Totieva, “The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system”, Vladikavkaz. Mat. Zh., 21:2 (2019),  58–66  mathnet  elib
2018
12. Zh. D. Totieva, D. K. Durdiev, “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Mat. Zametki, 103:1 (2018),  129–146  mathnet  mathscinet  elib; Math. Notes, 103:1 (2018), 118–132  isi  scopus 19
2017
13. Zh. D. Totieva, “The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity”, Sib. Èlektron. Mat. Izv., 14 (2017),  1108–1119  mathnet 1
14. D. K. Durdiev, Zh. D. Totieva, “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation”, Sibirsk. Mat. Zh., 58:3 (2017),  553–572  mathnet  elib; Siberian Math. J., 58:3 (2017), 427–444  isi  elib  scopus 20
2016
15. Zh. D. Totieva, “The multidimensional problem of determining the density function for the system of viscoelasticity”, Sib. Èlektron. Mat. Izv., 13 (2016),  635–644  mathnet 2
2015
16. D. Q. Durdiev, Zh. D. Totieva, “The problem of determining the multidimensional kernel of viscoelasticity equation”, Vladikavkaz. Mat. Zh., 17:4 (2015),  18–43  mathnet 32
2013
17. D. K. Durdiev, Zh. D. Totieva, “The problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013),  72–82  mathnet  mathscinet 33
2012
18. Zh. D. Totieva, “On the fundamental solution of the Cauchy problem for a hyperbolic operator”, Vladikavkaz. Mat. Zh., 14:2 (2012),  45–49  mathnet 2

2023
19. E. S. Kamenetskiĭ, R. Ch. Kulaev, A. G. Kusraev, R. M. Mnukhin, R. D. Nedin, A. F. Tedeev, Zh. D. Totieva, O. V. Yavruyan, “Alexander Ovanesovich Vatulyan (on his 70th anniversary)”, Vladikavkaz. Mat. Zh., 25:4 (2023),  143–147  mathnet

Presentations in Math-Net.Ru
1. Глобальная разрешимость двумерной обратной задачи для уравнения вязкоупругости
Zh. D. Totieva

August 12, 2021 18:10

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024