|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
M. R. Tomaev, Zh. D. Totieva, “An inverse two-dimensional problem for determining two unknowns in equation of memory type for a weakly horizontally inhomogeneous medium”, Vladikavkaz. Mat. Zh., 26:3 (2024), 112–134 |
|
2022 |
2. |
Durdimurod K. Durdiev, Zhanna D. Totieva, “Determination of non-stationary potential analytical with respect to spatial variables”, J. Sib. Fed. Univ. Math. Phys., 15:5 (2022), 565–576 |
3. |
D. K. Durdiev, Zh. D. Totieva, “Determination of a non-stationary adsorption coefficient analytical in part of spatial variables”, Mat. Tr., 25:2 (2022), 88–106 ; Siberian Adv. Math., 33:1 (2023), 1–14 |
4. |
Zh. D. Totieva, “Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium”, TMF, 213:2 (2022), 193–213 ; Theoret. and Math. Phys., 213:2 (2022), 1477–1494 |
1
|
|
2021 |
5. |
D. K. Durdiev, Zh. D. Totieva, “About global solvability of a multidimensional inverse problem for an equation with memory”, Sibirsk. Mat. Zh., 62:2 (2021), 269–285 ; Siberian Math. J., 62:2 (2021), 215–229 |
12
|
6. |
Z. A. Akhmatov, Zh. D. Totieva, “Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory”, Vladikavkaz. Mat. Zh., 23:4 (2021), 15–27 |
3
|
7. |
Zh. D. Totieva, “Linearized two-dimensional inverse problem of determining the kernel of the viscoelasticity equation”, Vladikavkaz. Mat. Zh., 23:2 (2021), 87–103 |
1
|
|
2020 |
8. |
D. K. Durdiev, Zh. D. Totieva, “Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives”, Sib. Èlektron. Mat. Izv., 17 (2020), 1106–1127 |
5
|
9. |
Zh. D. Totieva, “Determining the kernel of the viscoelasticity equation in a medium with slightly horizontal homogeneity”, Sibirsk. Mat. Zh., 61:2 (2020), 453–475 ; Siberian Math. J., 61:2 (2020), 359–378 |
3
|
|
2019 |
10. |
Zh. D. Totieva, “One-dimensional inverse coefficient problems of anisotropic viscoelasticity”, Sib. Èlektron. Mat. Izv., 16 (2019), 786–811 |
3
|
11. |
Zh. D. Totieva, “The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system”, Vladikavkaz. Mat. Zh., 21:2 (2019), 58–66 |
|
2018 |
12. |
Zh. D. Totieva, D. K. Durdiev, “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Mat. Zametki, 103:1 (2018), 129–146 ; Math. Notes, 103:1 (2018), 118–132 |
19
|
|
2017 |
13. |
Zh. D. Totieva, “The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity”, Sib. Èlektron. Mat. Izv., 14 (2017), 1108–1119 |
1
|
14. |
D. K. Durdiev, Zh. D. Totieva, “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation”, Sibirsk. Mat. Zh., 58:3 (2017), 553–572 ; Siberian Math. J., 58:3 (2017), 427–444 |
20
|
|
2016 |
15. |
Zh. D. Totieva, “The multidimensional problem of determining the density function for the system of viscoelasticity”, Sib. Èlektron. Mat. Izv., 13 (2016), 635–644 |
2
|
|
2015 |
16. |
D. Q. Durdiev, Zh. D. Totieva, “The problem of determining the multidimensional kernel of viscoelasticity equation”, Vladikavkaz. Mat. Zh., 17:4 (2015), 18–43 |
32
|
|
2013 |
17. |
D. K. Durdiev, Zh. D. Totieva, “The problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013), 72–82 |
33
|
|
2012 |
18. |
Zh. D. Totieva, “On the fundamental solution of the Cauchy problem for a hyperbolic operator”, Vladikavkaz. Mat. Zh., 14:2 (2012), 45–49 |
2
|
|
|
|
2023 |
19. |
E. S. Kamenetskiĭ, R. Ch. Kulaev, A. G. Kusraev, R. M. Mnukhin, R. D. Nedin, A. F. Tedeev, Zh. D. Totieva, O. V. Yavruyan, “Alexander Ovanesovich Vatulyan (on his 70th anniversary)”, Vladikavkaz. Mat. Zh., 25:4 (2023), 143–147 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|