Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 1106–1127
DOI: https://doi.org/10.33048/semi.2020.17.084
(Mi semr1278)
 

This article is cited in 5 scientific papers (total in 5 papers)

Differentical equations, dynamical systems and optimal control

Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives

D. K. Durdievab, Zh. D. Totievacd

a Bukhara State University, 11, Mukhammad Iqbol str., Bukhara, 200177, Uzbekistan
b Bukhara Department of the Mathematics Institute, Uzbekistan Academy of Sciences, Bukhara, 200177, Uzbekistan
c Southern Mathematical Institute of Vladikavkaz Scientific Centre, Russian Academy of Sciences, 93a, Markova str., Vladikavkaz, 362002, Russia
d North Ossetian State University, 46, Vatutina str., Vladikavkaz, 362025, Russia
Full-text PDF (387 kB) Citations (5)
References:
Abstract: The problem of determining the memory of a medium from a second-order equation of hyperbolic type with a constant principal part and variable coefficients for lower derivatives is considered. The method is based on the reduction of the problem to a non-linear system of Volterra equations of the second kind and uses the fundamental solution constructed by S. L. Sobolev for hyperbolic equation with variable coefficients. The theorem of global uniqueness, stability and the local theorem of existence are proved.
Keywords: inverse problem, hyperbolic integro-differential equation, Volterra integral equation, stability, delta function, kernel.
Received February 9, 2020, published August 18, 2020
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 35L20, 35R30, 35Q99
Language: English
Citation: D. K. Durdiev, Zh. D. Totieva, “Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives”, Sib. Èlektron. Mat. Izv., 17 (2020), 1106–1127
Citation in format AMSBIB
\Bibitem{DurTot20}
\by D.~K.~Durdiev, Zh.~D.~Totieva
\paper Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 1106--1127
\mathnet{http://mi.mathnet.ru/semr1278}
\crossref{https://doi.org/10.33048/semi.2020.17.084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000561108800001}
Linking options:
  • https://www.mathnet.ru/eng/semr1278
  • https://www.mathnet.ru/eng/semr/v17/p1106
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :92
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024