Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 213, Number 2, Pages 193–213
DOI: https://doi.org/10.4213/tmf10311
(Mi tmf10311)
 

This article is cited in 1 scientific paper (total in 1 paper)

Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium

Zh. D. Totieva

Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Russia
Full-text PDF (504 kB) Citations (1)
References:
Abstract: We discuss the inverse problem of successively finding two unknowns (a one-dimensional integral operator kernel and a two-dimensional wave propagation velocity) for the viscoelasticity equation in a weakly horizontally inhomogeneous medium. The direct initial boundary value problem for the displacement function contains zero initial data and the Neumann boundary condition of special form. Additional information consists in the Fourier transform of the displacement function at $x_3=0$. We assume that the unknown functions are expanded in an asymptotic power series in a small parameter. We prove theorems on the global unique solvability and stability of the inverse problem solution.
Keywords: linear viscoelasticity, inverse problem, delta function, Fourier transform, kernel, coefficient, stability.
Received: 12.05.2022
Revised: 27.06.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 213, Issue 2, Pages 1477–1494
DOI: https://doi.org/10.1134/S0040577922110010
Bibliographic databases:
Document Type: Article
MSC: 35L20, 35R30, 35Q99
Language: Russian
Citation: Zh. D. Totieva, “Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium”, TMF, 213:2 (2022), 193–213; Theoret. and Math. Phys., 213:2 (2022), 1477–1494
Citation in format AMSBIB
\Bibitem{Tot22}
\by Zh.~D.~Totieva
\paper Coefficient reconstruction problem for the~two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium
\jour TMF
\yr 2022
\vol 213
\issue 2
\pages 193--213
\mathnet{http://mi.mathnet.ru/tmf10311}
\crossref{https://doi.org/10.4213/tmf10311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538866}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1477T}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 2
\pages 1477--1494
\crossref{https://doi.org/10.1134/S0040577922110010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142349100}
Linking options:
  • https://www.mathnet.ru/eng/tmf10311
  • https://doi.org/10.4213/tmf10311
  • https://www.mathnet.ru/eng/tmf/v213/i2/p193
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :34
    References:61
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024