Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 2, Pages 269–285
DOI: https://doi.org/10.33048/smzh.2021.62.203
(Mi smj7555)
 

This article is cited in 12 scientific papers (total in 12 papers)

About global solvability of a multidimensional inverse problem for an equation with memory

D. K. Durdieva, Zh. D. Totievabc

a Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
b Southern Mathematical Institute, Vladikavkaz, Russia
c North-Ossetian State University, Vladikavkaz, Russia
References:
Abstract: Under study is the multidimensional inverse problem of determining the convolutional kernel of the integral term in an integro-differential wave equation. The direct problem is represented by a generalized initial-boundary value problem for this equation with zero initial data and the Neumann boundary condition in the form of the Dirac delta-function. For solving the inverse problem, the traces of the solution to the direct problem on the domain boundary are given as an additional condition. The main result of the article is the theorem of global unique solvability of the inverse problem in the class of functions continuous in the time variable $t$ and analytic in the space variable. We apply the methods of scales of Banach spaces of real analytic functions of variable and weight norms in the class of continuous functions.
Keywords: integro-differential equation, inverse problem, global solvability, stability estimation, weight norm.
Received: 20.10.2020
Revised: 23.01.2021
Accepted: 24.02.2021
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 2, Pages 215–229
DOI: https://doi.org/10.1134/S0037446621020038
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 35R30
Language: Russian
Citation: D. K. Durdiev, Zh. D. Totieva, “About global solvability of a multidimensional inverse problem for an equation with memory”, Sibirsk. Mat. Zh., 62:2 (2021), 269–285; Siberian Math. J., 62:2 (2021), 215–229
Citation in format AMSBIB
\Bibitem{DurTot21}
\by D.~K.~Durdiev, Zh.~D.~Totieva
\paper About global solvability of a~multidimensional inverse problem for an equation with memory
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 2
\pages 269--285
\mathnet{http://mi.mathnet.ru/smj7555}
\crossref{https://doi.org/10.33048/smzh.2021.62.203}
\elib{https://elibrary.ru/item.asp?id=44949135}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 2
\pages 215--229
\crossref{https://doi.org/10.1134/S0037446621020038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000635714500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103963963}
Linking options:
  • https://www.mathnet.ru/eng/smj7555
  • https://www.mathnet.ru/eng/smj/v62/i2/p269
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :108
    References:57
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024