I. V. Podvigin, “A criterion for the power-law rate of convergence of ergodic means for unitary actions of $\mathbb{Z}^d$ and $\mathbb{R}^d$”, Algebra i Analiz, 36:4 (2024), 148–164
2.
I. V. Podvigin, “On convergence rates in the Birkhoff Ergodic Theorem”, Sibirsk. Mat. Zh., 65:5 (2024), 991–1010
3.
A. G. Kachurovskii, I. V. Podvigin, V. E. Todikov, A. J. Khakimbaev, “A spectral criterion for power-law convergence rate in the ergodic theorem for ${\Bbb Z}^d$ and ${\Bbb R}^d$ actions”, Sibirsk. Mat. Zh., 65:1 (2024), 92–114
A. G. Kachurovskii, I. V. Podvigin, A. J. Khakimbaev, “Uniform Convergence on Subspaces in von Neumann Ergodic
Theorem with Discrete Time”, Mat. Zametki, 113:5 (2023), 713–730; Math. Notes, 113:5 (2023), 680–693
A. G. Kachurovskii, I. V. Podvigin, V. E. Todikov, “Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 183–206
I. V. Podvigin, “On possible estimates of the rate of pointwise convergence in the Birkhoff ergodic theorem”, Sibirsk. Mat. Zh., 63:2 (2022), 379–390; Siberian Math. J., 63:2 (2022), 316–325
A. G. Kachurovskii, I. V. Podvigin, A. A. Svishchev, “Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time”, Mat. Tr., 24:2 (2021), 65–80
I. V. Podvigin, “Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions”, Sib. Èlektron. Mat. Izv., 17 (2020), 626–636
A. G. Kachurovskii, I. V. Podvigin, A. A. Svishchev, “The maximum pointwise rate of convergence in Birkhoff's ergodic theorem”, Zap. Nauchn. Sem. POMI, 498 (2020), 18–25
A. G. Kachurovskii, I. V. Podvigin, “Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem”, Mat. Zametki, 106:1 (2019), 40–52; Math. Notes, 106:1 (2019), 52–62
K. I. Knizhov, I. V. Podvigin, “On the convergence of the Luzin integral and its analogues”, Sib. Èlektron. Mat. Izv., 16 (2019), 85–95
2017
15.
I. V. Podvigin, “Estimates for correlation in dynamical systems: from Hölder continuous functions to general observables”, Mat. Tr., 20:2 (2017), 90–119; Siberian Adv. Math., 28:3 (2018), 187–206
A. G. Kachurovskiĭ, I. V. Podvigin, “Large deviations of the ergodic averages: from Hölder continuity to continuity almost everywhere”, Mat. Tr., 20:1 (2017), 97–120; Siberian Adv. Math., 28:1 (2018), 23–38
A. G. Kachurovskii, I. V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Tr. Mosk. Mat. Obs., 77:1 (2016), 1–66; Trans. Moscow Math. Soc., 77 (2016), 1–53
I. V. Podvigin, “On the rate of convergence in the individual ergodic theorem for the action of a semigroup”, Mat. Tr., 18:2 (2015), 93–111; Siberian Adv. Math., 26:2 (2016), 139–151
I. V. Podvigin, “On the Exponential Rate of Convergence in the Birkhoff Ergodic Theorem”, Mat. Zametki, 95:4 (2014), 638–640; Math. Notes, 95:4 (2014), 573–576
A. G. Kachurovskii, I. V. Podvigin, “Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem”, Mat. Zametki, 94:4 (2013), 569–577; Math. Notes, 94:4 (2013), 524–531
I. V. Podvigin, “Martingale ergodic and ergodic martingale processes with continuous time”, Mat. Sb., 200:5 (2009), 55–70; Sb. Math., 200:5 (2009), 683–696