Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 5, Pages 683–696
DOI: https://doi.org/10.1070/SM2009v200n05ABEH004015
(Mi sm7486)
 

This article is cited in 3 scientific papers (total in 3 papers)

Martingale ergodic and ergodic martingale processes with continuous time

I. V. Podvigin

Novosibirsk State University
References:
Abstract: In a paper dedicated to unifying martingales and ergodic averages, Kachurovskiǐ introduced certain unifying discrete-time martingale ergodic and ergodic martingale processes, for which he proved convergence theorems and established maximal and dominant inequalities. Our purpose in this article is to obtain similar results for such processes with continuous time. In addition, the results are used to assert convergence of yet another unifying process relating to Rota's approach to unification of martingales and Abel ergodic averages.
Bibliography: 13 titles.
Keywords: ergodic averages, regular martingale, positive $\mathrm{L_1}{-}\mathrm{L_\infty}$-contraction.
Received: 13.11.2008 and 01.12.2008
Bibliographic databases:
UDC: 517.987+519.216
MSC: 60G44
Language: English
Original paper language: Russian
Citation: I. V. Podvigin, “Martingale ergodic and ergodic martingale processes with continuous time”, Sb. Math., 200:5 (2009), 683–696
Citation in format AMSBIB
\Bibitem{Pod09}
\by I.~V.~Podvigin
\paper Martingale ergodic and ergodic martingale processes with continuous time
\jour Sb. Math.
\yr 2009
\vol 200
\issue 5
\pages 683--696
\mathnet{http://mi.mathnet.ru//eng/sm7486}
\crossref{https://doi.org/10.1070/SM2009v200n05ABEH004015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2541222}
\zmath{https://zbmath.org/?q=an:1185.60046}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..683P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269865000004}
\elib{https://elibrary.ru/item.asp?id=19066130}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350149872}
Linking options:
  • https://www.mathnet.ru/eng/sm7486
  • https://doi.org/10.1070/SM2009v200n05ABEH004015
  • https://www.mathnet.ru/eng/sm/v200/i5/p55
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024