Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Veliev, Oktay Alish oglu

Statistics Math-Net.Ru
Total publications: 18
Scientific articles: 17

Number of views:
This page:482
Abstract pages:4150
Full texts:1284
References:422
E-mail:

https://www.mathnet.ru/eng/person26032
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/190542

Publications in Math-Net.Ru Citations
2024
1. O. A. Veliev, “On the differential operators of odd order with PT-symmetric periodic matrix coefficients”, Funktsional. Anal. i Prilozhen., 58:4 (2024),  142–147  mathnet
2022
2. O. A. Veliev, “Spectral Expansion for Nonself-Adjoint Differential Operators with Periodic Matrix Coefficients”, Math. Notes, 112:6 (2022), 1025–1043  mathnet  mathscinet  scopus
2019
3. O. A. Veliev, “On the finite-zone periodic PT-symmetric potentials”, Mosc. Math. J., 19:4 (2019),  807–816  mathnet  isi  scopus 4
2018
4. O. A. Veliev, “Asymptotically Spectral Periodic Differential Operators”, Math. Notes, 104:3 (2018), 364–376  mathnet  isi  scopus 1
2016
5. F. Seref, O. A. Veliev, “On Sharp Asymptotic Formulas for the Sturm–Liouville Operator with a Matrix Potential”, Math. Notes, 100:2 (2016), 291–297  mathnet  mathscinet  isi  elib  scopus 1
2015
6. Cemile Nur, O. A. Veliev, “On the basis property of the root functions of Sturm–Liouville operators with general regular boundary conditions”, Mosc. Math. J., 15:3 (2015),  511–526  mathnet  mathscinet  isi 2
2009
7. O. A. Veliev, A. A. Shkalikov, “On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm–Liouville Problems”, Mat. Zametki, 85:5 (2009),  671–686  mathnet  mathscinet  zmath  elib; Math. Notes, 85:6 (2009), 647–660  isi  scopus 58
2007
8. O. A. Veliev, “Non-Self-Adjoint Sturm–Liouville Operators with Matrix Potentials”, Mat. Zametki, 81:4 (2007),  496–506  mathnet  mathscinet  zmath  elib; Math. Notes, 81:4 (2007), 440–448  isi  elib  scopus 15
1989
9. F. G. Maksudov, O. A. Veliev, “Spectral analysis of differential operators with periodic matrix coefficients”, Differ. Uravn., 25:3 (1989),  400–409  mathnet  mathscinet; Differ. Equ., 25:3 (1989), 271–277 2
1987
10. O. A. Veliev, “Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe–Sommerfeld conjecture”, Funktsional. Anal. i Prilozhen., 21:2 (1987),  1–15  mathnet  mathscinet  zmath; Funct. Anal. Appl., 21:2 (1987), 87–100  isi 27
1986
11. O. A. Veliev, “Spectral expansion of nonselfadjoint differential operators with periodic coefficients”, Differ. Uravn., 22:12 (1986),  2052–2059  mathnet  mathscinet  zmath
1985
12. O. A. Veliev, S. A. Molchanov, “Structure of the spectrum of the periodic Schrödinger operator on the Euclidean torus”, Funktsional. Anal. i Prilozhen., 19:3 (1985),  86–87  mathnet  mathscinet  zmath; Funct. Anal. Appl., 19:3 (1985), 238–240  isi 9
1983
13. O. A. Veliev, “The spectrum of the Schrödinger operator with periodic potential”, Dokl. Akad. Nauk SSSR, 268:6 (1983),  1289–1292  mathnet  mathscinet
14. O. A. Veliev, “The spectrum and spectral singularities of differential operators with periodic complex-valued coefficients”, Differ. Uravn., 19:8 (1983),  1316–1324  mathnet  mathscinet
1981
15. F. G. Maksudov, O. A. Veliev, “Nonselfadjoint differential operators in the space of vector-valued functions with periodic coefficients”, Dokl. Akad. Nauk SSSR, 258:1 (1981),  26–30  mathnet  mathscinet  zmath 1
1980
16. O. A. Veliev, “The one-dimensional Schrödinger operator with a periodic complex-valued potential”, Dokl. Akad. Nauk SSSR, 250:6 (1980),  1292–1296  mathnet  mathscinet  zmath 1

1982
17. F. G. Maksudov, O. A. Veliev, “Поправки к статье “Несамосопряженные дифференциальные операторы в пространстве вектор-функции с периодическими коэффициентами” (ДАН, т. 258, № 1, 1981 г.)”, Dokl. Akad. Nauk SSSR, 265:2 (1982),  264  mathnet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024