Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 3, Pages 511–526
DOI: https://doi.org/10.17323/1609-4514-2015-15-3-511-526
(Mi mmj573)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the basis property of the root functions of Sturm–Liouville operators with general regular boundary conditions

Cemile Nur, O. A. Veliev

Department of Mathematics, Dogus University, Kadiköy, Istanbul, Turkey
Full-text PDF Citations (2)
References:
Abstract: We obtain the asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm–Liouville operators with general regular boundary conditions. Using these formulas, we find sufficient conditions on the potential $q$ such that the root functions of these operators do not form a Riesz basis.
Key words and phrases: asymptotic formulas, regular boundary conditions, Riesz basis.
Received: June 14, 2013; in revised form December 3, 2014
Bibliographic databases:
Document Type: Article
MSC: 34L05, 34L20
Language: English
Citation: Cemile Nur, O. A. Veliev, “On the basis property of the root functions of Sturm–Liouville operators with general regular boundary conditions”, Mosc. Math. J., 15:3 (2015), 511–526
Citation in format AMSBIB
\Bibitem{NurVel15}
\by Cemile~Nur, O.~A.~Veliev
\paper On the basis property of the root functions of Sturm--Liouville operators with general regular boundary conditions
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 3
\pages 511--526
\mathnet{http://mi.mathnet.ru/mmj573}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-3-511-526}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3427437}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000365392600006}
Linking options:
  • https://www.mathnet.ru/eng/mmj573
  • https://www.mathnet.ru/eng/mmj/v15/i3/p511
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:213
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024