Abstract:
The paper deals with the Sturm-Liouville operator
Ly=−y″+q(x)y,x∈[0,1],
generated in the space L2=L2[0,1] by periodic or antiperiodic boundary conditions. Several theorems on the Riesz basis property of the root functions of the operator L are proved. One of the main results is the following. Let q belong to the Sobolev space Wp1[0,1] for some integer p⩾ and satisfy the conditions q^{(k)}(0)=q^{(k)}(1)=0 for 0\le k\le s-1, where s\le p. Let the functions Q and S be defined by the equalities
Q(x)=\int_0^xq(t)\,dt,\qquad S(x)=Q^2(x)
and let q_n, Q_n, and S_n be the Fourier coefficients of q, Q, and S with respect to the trigonometric system \{e^{2\pi inx}\}_{-\infty}^\infty. Assume that the sequence q_{2n}-S_{2n}+2Q_0Q_{2n} decreases not faster than the powers n^{-s-2}. Then the system of eigenfunctions and associated functions of the operator L generated by periodic boundary conditions forms a Riesz basis in the space L_2[0,1] (provided that the eigenfunctions are normalized) if and only if the condition
q_{2n}-S_{2n}+2Q_0Q_{2n}\asymp q_{-2n}-S_{-2n}+2Q_0Q_{-2n},\qquad n>1,
holds.
Keywords:
periodic Sturm-Liouville problem, Hill operator, Riesz basis, Sobolev spaces, Birkhoff regularity, Fourier series, Jordan chain.
Citation:
O. A. Veliev, A. A. Shkalikov, “On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm–Liouville Problems”, Mat. Zametki, 85:5 (2009), 671–686; Math. Notes, 85:6 (2009), 647–660
\Bibitem{VelShk09}
\by O.~A.~Veliev, A.~A.~Shkalikov
\paper On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm--Liouville Problems
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 5
\pages 671--686
\mathnet{http://mi.mathnet.ru/mzm6912}
\crossref{https://doi.org/10.4213/mzm6912}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2572858}
\zmath{https://zbmath.org/?q=an:1190.34111}
\elib{https://elibrary.ru/item.asp?id=15294443}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 6
\pages 647--660
\crossref{https://doi.org/10.1134/S0001434609050058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267684500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949120920}
Linking options:
https://www.mathnet.ru/eng/mzm6912
https://doi.org/10.4213/mzm6912
https://www.mathnet.ru/eng/mzm/v85/i5/p671
This publication is cited in the following 58 articles:
Oktay Veliev, Springer Tracts in Modern Physics, 291, Multidimensional Periodic Schrödinger Operator, 2024, 31
N. B Kerimov, “O spektral'nykh svoystvakh differentsial'nykh operatorov vysokogo poryadka s periodicheskimi kraevymi usloviyami”, Differentsialnye uravneniya, 59:3 (2023), 314
N. B. Kerimov, “On the Spectral Properties of High-Order Differential Operators with Periodic Boundary Conditions”, Diff Equat, 59:3 (2023), 312
N. S. Imanbaev, “On Basic Properties of Eigenfunctions and Associated Functions of One Loaded Operator of Multiple Differentiation”, Lobachevskii J Math, 43:3 (2022), 749
O Sh. Mukhtarov, K. Aydemir, “Spectral Analysis of $\alpha $-Semi Periodic 2-Interval Sturm-Liouville Problems”, Qual. Theory Dyn. Syst., 21:3 (2022)
B. N. Biyarov, “One Inverse Problem for the Sturm–Liouville Operator”, Math. Notes, 110:1 (2021), 3–15
Mukhtarov O.Sh., Aydemir K., “Two-Linked Periodic Sturm-Liouville Problems With Transmission Conditions”, Math. Meth. Appl. Sci., 44:18 (2021), 14664–14676
C. Nur, “On the Estimates of Periodic Eigenvalues of Sturm–Liouville Operators with Trigonometric Polynomial Potentials”, Math. Notes, 109:5 (2021), 794–807
Oktay Veliev, Non-self-adjoint Schrödinger Operator with a Periodic Potential, 2021, 15
Kadriye AYDEMİR, Oktay MUKHTAROV, “The Transmittal-Characteristic Function of Three-Interval Periodic Sturm-Liouville Problem with Transmission Conditions”, Journal of New Theory, 2021, no. 37, 26
P. B. Djakov, B. S. Mityagin, “Spectral triangles of non-selfadjoint Hill and Dirac operators”, Russian Math. Surveys, 75:4 (2020), 587–626
A. M. Savchuk, I. V. Sadovnichaya, “Spektralnyi analiz odnomernoi sistemy Diraka s summiruemym potentsialom i operatora Shturma—Liuvillya s koeffitsientami-raspredeleniyami”, Spektralnyi analiz, SMFN, 66, no. 3, Rossiiskii universitet druzhby narodov, M., 2020, 373–530
Cabri O. Mamedov K.R., “On the Riesz Basisness of Root Functions of a Sturm-Liouville Operator With Conjugate Conditions”, Lobachevskii J. Math., 41:9, SI (2020), 1784–1790
Kaya U. Kuzu E.K., “Basis Properties of Root Functions of a Regular Fourth Order Boundary Value Problem”, Hacet. J. Math. Stat., 49:1 (2020), 338–351
Imanbaev N.S., “On Basis Property of Systems Root Vectors of a Loaded Multiple Differentiation Operator”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 1:329 (2020), 32–37
Cabri O. Mamedov K.R., “Riesz Basisness of Root Functions of a Sturm-Liouville Operator With Conjugate Conditions”, Lobachevskii J. Math., 41:1, SI (2020), 1–6
Veliev O.A., “On the Spectrality and Spectral Expansion of the Non-Self-Adjoint Mathieu-Hill Operator in l-2 (-Infinity, Infinity)”, Commun. Pure Appl. Anal, 19:3 (2020), 1537–1562
N. B. Uskova, “Matrichnyi analiz spektralnykh proektorov vozmuschennykh samosopryazhennykh operatorov”, Sib. elektron. matem. izv., 16 (2019), 369–405
Shaldanbayev A.Sh., Shaldanbayeva A.A., Shaldanbay B.A., “On Projectional Orthogonal Basis of a Linear Non-Self -Adjoint Operator”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 2:324 (2019), 79–89
Cabri O., “On the Riesz Basis Property of the Root Functions of a Discontinuous Boundary Problem”, Math. Meth. Appl. Sci., 42:18 (2019), 6733–6740