Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 5, Pages 671–686
DOI: https://doi.org/10.4213/mzm6912
(Mi mzm6912)
 

This article is cited in 58 scientific papers (total in 58 papers)

On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm–Liouville Problems

O. A. Velieva, A. A. Shkalikovb

a Dogus University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The paper deals with the Sturm-Liouville operator
$$ Ly=-y''+q(x)y, \qquad x\in[0,1], $$
generated in the space $L_2=L_2[0,1]$ by periodic or antiperiodic boundary conditions. Several theorems on the Riesz basis property of the root functions of the operator $L$ are proved. One of the main results is the following. Let $q$ belong to the Sobolev space $W_1^p[0,1]$ for some integer $p\ge0$ and satisfy the conditions $q^{(k)}(0)=q^{(k)}(1)=0$ for $0\le k\le s-1$, where $s\le p$. Let the functions $Q$ and $S$ be defined by the equalities
$$ Q(x)=\int_0^xq(t)\,dt,\qquad S(x)=Q^2(x) $$
and let $q_n$, $Q_n$, and $S_n$ be the Fourier coefficients of $q$, $Q$, and $S$ with respect to the trigonometric system $\{e^{2\pi inx}\}_{-\infty}^\infty$. Assume that the sequence $q_{2n}-S_{2n}+2Q_0Q_{2n}$ decreases not faster than the powers $n^{-s-2}$. Then the system of eigenfunctions and associated functions of the operator $L$ generated by periodic boundary conditions forms a Riesz basis in the space $L_2[0,1]$ (provided that the eigenfunctions are normalized) if and only if the condition
$$ q_{2n}-S_{2n}+2Q_0Q_{2n}\asymp q_{-2n}-S_{-2n}+2Q_0Q_{-2n},\qquad n>1, $$
holds.
Keywords: periodic Sturm-Liouville problem, Hill operator, Riesz basis, Sobolev spaces, Birkhoff regularity, Fourier series, Jordan chain.
Received: 20.02.2008
Revised: 30.10.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 6, Pages 647–660
DOI: https://doi.org/10.1134/S0001434609050058
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: O. A. Veliev, A. A. Shkalikov, “On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm–Liouville Problems”, Mat. Zametki, 85:5 (2009), 671–686; Math. Notes, 85:6 (2009), 647–660
Citation in format AMSBIB
\Bibitem{VelShk09}
\by O.~A.~Veliev, A.~A.~Shkalikov
\paper On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm--Liouville Problems
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 5
\pages 671--686
\mathnet{http://mi.mathnet.ru/mzm6912}
\crossref{https://doi.org/10.4213/mzm6912}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2572858}
\zmath{https://zbmath.org/?q=an:1190.34111}
\elib{https://elibrary.ru/item.asp?id=15294443}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 6
\pages 647--660
\crossref{https://doi.org/10.1134/S0001434609050058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267684500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949120920}
Linking options:
  • https://www.mathnet.ru/eng/mzm6912
  • https://doi.org/10.4213/mzm6912
  • https://www.mathnet.ru/eng/mzm/v85/i5/p671
  • This publication is cited in the following 58 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1255
    Full-text PDF :462
    References:133
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024