Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 5, Pages 671–686
DOI: https://doi.org/10.4213/mzm6912
(Mi mzm6912)
 

This article is cited in 58 scientific papers (total in 58 papers)

On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm–Liouville Problems

O. A. Velieva, A. A. Shkalikovb

a Dogus University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The paper deals with the Sturm-Liouville operator
Ly=y+q(x)y,x[0,1],
generated in the space L2=L2[0,1] by periodic or antiperiodic boundary conditions. Several theorems on the Riesz basis property of the root functions of the operator L are proved. One of the main results is the following. Let q belong to the Sobolev space Wp1[0,1] for some integer p and satisfy the conditions q^{(k)}(0)=q^{(k)}(1)=0 for 0\le k\le s-1, where s\le p. Let the functions Q and S be defined by the equalities
Q(x)=\int_0^xq(t)\,dt,\qquad S(x)=Q^2(x)
and let q_n, Q_n, and S_n be the Fourier coefficients of q, Q, and S with respect to the trigonometric system \{e^{2\pi inx}\}_{-\infty}^\infty. Assume that the sequence q_{2n}-S_{2n}+2Q_0Q_{2n} decreases not faster than the powers n^{-s-2}. Then the system of eigenfunctions and associated functions of the operator L generated by periodic boundary conditions forms a Riesz basis in the space L_2[0,1] (provided that the eigenfunctions are normalized) if and only if the condition
q_{2n}-S_{2n}+2Q_0Q_{2n}\asymp q_{-2n}-S_{-2n}+2Q_0Q_{-2n},\qquad n>1,
holds.
Keywords: periodic Sturm-Liouville problem, Hill operator, Riesz basis, Sobolev spaces, Birkhoff regularity, Fourier series, Jordan chain.
Received: 20.02.2008
Revised: 30.10.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 6, Pages 647–660
DOI: https://doi.org/10.1134/S0001434609050058
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: O. A. Veliev, A. A. Shkalikov, “On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm–Liouville Problems”, Mat. Zametki, 85:5 (2009), 671–686; Math. Notes, 85:6 (2009), 647–660
Citation in format AMSBIB
\Bibitem{VelShk09}
\by O.~A.~Veliev, A.~A.~Shkalikov
\paper On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm--Liouville Problems
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 5
\pages 671--686
\mathnet{http://mi.mathnet.ru/mzm6912}
\crossref{https://doi.org/10.4213/mzm6912}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2572858}
\zmath{https://zbmath.org/?q=an:1190.34111}
\elib{https://elibrary.ru/item.asp?id=15294443}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 6
\pages 647--660
\crossref{https://doi.org/10.1134/S0001434609050058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267684500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949120920}
Linking options:
  • https://www.mathnet.ru/eng/mzm6912
  • https://doi.org/10.4213/mzm6912
  • https://www.mathnet.ru/eng/mzm/v85/i5/p671
  • This publication is cited in the following 58 articles:
    1. Oktay Veliev, Springer Tracts in Modern Physics, 291, Multidimensional Periodic Schrödinger Operator, 2024, 31  crossref
    2. N. B Kerimov, “O spektral'nykh svoystvakh differentsial'nykh operatorov vysokogo poryadka s periodicheskimi kraevymi usloviyami”, Differentsialnye uravneniya, 59:3 (2023), 314  crossref
    3. N. B. Kerimov, “On the Spectral Properties of High-Order Differential Operators with Periodic Boundary Conditions”, Diff Equat, 59:3 (2023), 312  crossref
    4. N. S. Imanbaev, “On Basic Properties of Eigenfunctions and Associated Functions of One Loaded Operator of Multiple Differentiation”, Lobachevskii J Math, 43:3 (2022), 749  crossref
    5. O Sh. Mukhtarov, K. Aydemir, “Spectral Analysis of $\alpha $-Semi Periodic 2-Interval Sturm-Liouville Problems”, Qual. Theory Dyn. Syst., 21:3 (2022)  crossref
    6. B. N. Biyarov, “One Inverse Problem for the Sturm–Liouville Operator”, Math. Notes, 110:1 (2021), 3–15  mathnet  crossref  crossref  isi  elib
    7. Mukhtarov O.Sh., Aydemir K., “Two-Linked Periodic Sturm-Liouville Problems With Transmission Conditions”, Math. Meth. Appl. Sci., 44:18 (2021), 14664–14676  crossref  mathscinet  isi
    8. C. Nur, “On the Estimates of Periodic Eigenvalues of Sturm–Liouville Operators with Trigonometric Polynomial Potentials”, Math. Notes, 109:5 (2021), 794–807  mathnet  mathnet  crossref  isi  scopus
    9. Oktay Veliev, Non-self-adjoint Schrödinger Operator with a Periodic Potential, 2021, 15  crossref
    10. Kadriye AYDEMİR, Oktay MUKHTAROV, “The Transmittal-Characteristic Function of Three-Interval Periodic Sturm-Liouville Problem with Transmission Conditions”, Journal of New Theory, 2021, no. 37, 26  crossref
    11. P. B. Djakov, B. S. Mityagin, “Spectral triangles of non-selfadjoint Hill and Dirac operators”, Russian Math. Surveys, 75:4 (2020), 587–626  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. A. M. Savchuk, I. V. Sadovnichaya, “Spektralnyi analiz odnomernoi sistemy Diraka s summiruemym potentsialom i operatora Shturma—Liuvillya s koeffitsientami-raspredeleniyami”, Spektralnyi analiz, SMFN, 66, no. 3, Rossiiskii universitet druzhby narodov, M., 2020, 373–530  mathnet  crossref
    13. Cabri O. Mamedov K.R., “On the Riesz Basisness of Root Functions of a Sturm-Liouville Operator With Conjugate Conditions”, Lobachevskii J. Math., 41:9, SI (2020), 1784–1790  crossref  mathscinet  isi
    14. Kaya U. Kuzu E.K., “Basis Properties of Root Functions of a Regular Fourth Order Boundary Value Problem”, Hacet. J. Math. Stat., 49:1 (2020), 338–351  crossref  mathscinet  isi  scopus
    15. Imanbaev N.S., “On Basis Property of Systems Root Vectors of a Loaded Multiple Differentiation Operator”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 1:329 (2020), 32–37  crossref  isi
    16. Cabri O. Mamedov K.R., “Riesz Basisness of Root Functions of a Sturm-Liouville Operator With Conjugate Conditions”, Lobachevskii J. Math., 41:1, SI (2020), 1–6  crossref  mathscinet  isi
    17. Veliev O.A., “On the Spectrality and Spectral Expansion of the Non-Self-Adjoint Mathieu-Hill Operator in l-2 (-Infinity, Infinity)”, Commun. Pure Appl. Anal, 19:3 (2020), 1537–1562  crossref  mathscinet  isi  scopus
    18. N. B. Uskova, “Matrichnyi analiz spektralnykh proektorov vozmuschennykh samosopryazhennykh operatorov”, Sib. elektron. matem. izv., 16 (2019), 369–405  mathnet  crossref  mathscinet
    19. Shaldanbayev A.Sh., Shaldanbayeva A.A., Shaldanbay B.A., “On Projectional Orthogonal Basis of a Linear Non-Self -Adjoint Operator”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 2:324 (2019), 79–89  crossref  isi
    20. Cabri O., “On the Riesz Basis Property of the Root Functions of a Discontinuous Boundary Problem”, Math. Meth. Appl. Sci., 42:18 (2019), 6733–6740  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1306
    Full-text PDF :483
    References:142
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025