Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 4, Pages 496–506
DOI: https://doi.org/10.4213/mzm3704
(Mi mzm3704)
 

This article is cited in 15 scientific papers (total in 15 papers)

Non-Self-Adjoint Sturm–Liouville Operators with Matrix Potentials

O. A. Veliev

Dogus University
References:
Abstract: We obtain asymptotic formulas for non-self-adjoint operators generated by the Sturm–Liouville system and quasiperiodic boundary conditions. Using these asymptotic formulas, we obtain conditions on the potential for which the system of root vectors of the operator under consideration forms a Riesz basis.
Keywords: Sturm–Liouville operator, non-self-adjoint operator, quasiperiodic boundary condition, Riesz basis, root function, Jordan chain, Bessel operator.
Received: 05.08.2005
English version:
Mathematical Notes, 2007, Volume 81, Issue 4, Pages 440–448
DOI: https://doi.org/10.1134/S0001434607030200
Bibliographic databases:
UDC: 517.953
Language: Russian
Citation: O. A. Veliev, “Non-Self-Adjoint Sturm–Liouville Operators with Matrix Potentials”, Mat. Zametki, 81:4 (2007), 496–506; Math. Notes, 81:4 (2007), 440–448
Citation in format AMSBIB
\Bibitem{Vel07}
\by O.~A.~Veliev
\paper Non-Self-Adjoint Sturm--Liouville Operators with Matrix Potentials
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 496--506
\mathnet{http://mi.mathnet.ru/mzm3704}
\crossref{https://doi.org/10.4213/mzm3704}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2351855}
\zmath{https://zbmath.org/?q=an:1153.34018}
\elib{https://elibrary.ru/item.asp?id=9486218}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 440--448
\crossref{https://doi.org/10.1134/S0001434607030200}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000020}
\elib{https://elibrary.ru/item.asp?id=13562045}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248324309}
Linking options:
  • https://www.mathnet.ru/eng/mzm3704
  • https://doi.org/10.4213/mzm3704
  • https://www.mathnet.ru/eng/mzm/v81/i4/p496
  • This publication is cited in the following 15 articles:
    1. Natanael Karjanto, Peter Sadhani, “Unraveling the Complexity of Inverting the Sturm–Liouville Boundary Value Problem to Its Canonical Form”, Mathematics, 12:9 (2024), 1329  crossref
    2. Oktay Veliev, “On the bands of the Schrödinger operator with a matrix potential”, Mathematische Nachrichten, 296:3 (2023), 1285  crossref
    3. Veliev O.A., “On the Schrodinger Operator With a Periodic Pt-Symmetric Matrix Potential”, J. Math. Phys., 62:10 (2021), 103501  crossref  mathscinet  isi
    4. N. P. Bondarenko, “Direct and Inverse Problems for the Matrix Sturm–Liouville Operator with General Self-Adjoint Boundary Conditions”, Math. Notes, 109:3 (2021), 358–378  mathnet  mathnet  crossref  isi  scopus
    5. D. M. Polyakov, “Spectral estimates for the fourth-order operator with matrix coefficients”, Comput. Math. Math. Phys., 60:7 (2020), 1163–1184  mathnet  crossref  crossref  isi  elib
    6. D. M. Polyakov, “On the Spectral Characteristics of Non-Self-Adjoint Fourth-Order Operators with Matrix Coefficients”, Math. Notes, 105:4 (2019), 630–635  mathnet  crossref  crossref  mathscinet  isi  elib
    7. N. B. Uskova, “Matrichnyi analiz spektralnykh proektorov vozmuschennykh samosopryazhennykh operatorov”, Sib. elektron. matem. izv., 16 (2019), 369–405  mathnet  crossref  mathscinet
    8. Van Gorder R.A., Kim H., Krause A.L., “Diffusive Instabilities and Spatial Patterning From the Coupling of Reaction-Diffusion Processes With Stokes Flow in Complex Domains”, J. Fluid Mech., 877 (2019), 759–823  crossref  mathscinet  isi  scopus
    9. I. N. Braeutigam, D. M. Polyakov, “On the asymptotics of eigenvalues of a fourth-order differential operator with matrix coefficients”, Differ. Equ., 54:4 (2018), 450–467  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    10. Uskova N.B., “On the spectral properties of a second-order differential operator with a matrix potential”, Differ. Equ., 52:5 (2016), 557–567  crossref  mathscinet  zmath  isi  elib  scopus
    11. F. Seref, O. A. Veliev, “On Sharp Asymptotic Formulas for the Sturm–Liouville Operator with a Matrix Potential”, Math. Notes, 100:2 (2016), 291–297  mathnet  mathnet  crossref  isi  scopus
    12. N. B. Uskova, “On spectral properties of Sturm–Liouville operator with matrix potential”, Ufa Math. J., 7:3 (2015), 84–94  mathnet  crossref  isi  elib
    13. Fulya Şeref, O. A. Veliev, “On non-self-adjoint Sturm-Liouville operators in the space of vector functions”, Math Notes, 95:1-2 (2014), 180  crossref
    14. Scherbakov A.O., “Spektralnyi analiz nesamosopryazhennogo operatora Shturma-Liuvillya s singulyarnym potentsialom”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 31:11 (2013), 102–108  elib
    15. Veliev O. A., “Uniform convergence of the spectral expansion for a differential operator with periodic matrix coefficients”, Bound. Value Probl., 2008, 628973, 22 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:578
    Full-text PDF :178
    References:79
    First page:7
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025