|
|
Publications in Math-Net.Ru |
Citations |
|
2019 |
1. |
A. Ferone, M. V. Korobkov, A. Roviello, “The Morse–Sard theorem and Luzin $N$-property: a new synthesis for smooth and Sobolev mappings”, Sibirsk. Mat. Zh., 60:5 (2019), 1171–1185 ; Siberian Math. J., 60:5 (2019), 916–926 |
3
|
|
2016 |
2. |
Anatoly P. Kopylov, Mikhail V. Korobkov, “Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold”, J. Sib. Fed. Univ. Math. Phys., 9:3 (2016), 320–331 |
1
|
|
2014 |
3. |
M. V. Korobkov, K. Pileckas, V. V. Pukhnachov, R. Russo, “The flux problem for the Navier–Stokes equations”, Uspekhi Mat. Nauk, 69:6(420) (2014), 115–176 ; Russian Math. Surveys, 69:6 (2014), 1065–1122 |
40
|
|
2009 |
4. |
M. V. Korobkov, “A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains”, Mat. Tr., 12:2 (2009), 52–96 ; Siberian Adv. Math., 20:4 (2010), 256–284 |
5
|
5. |
M. V. Korobkov, “Properties of $C^1$-smooth mappings with one-dimensional gradient range”, Sibirsk. Mat. Zh., 50:5 (2009), 1105–1122 ; Siberian Math. J., 50:5 (2009), 874–886 |
5
|
|
2008 |
6. |
M. V. Korobkov, “Necessary and sufficient conditions for unique determination of plane domains”, Sibirsk. Mat. Zh., 49:3 (2008), 548–567 ; Siberian Math. J., 49:3 (2008), 436–451 |
4
|
7. |
M. V. Korobkov, “An example of a $C^1$-smooth function whose gradient range is an arc with no tangent at any point”, Sibirsk. Mat. Zh., 49:1 (2008), 134–144 ; Siberian Math. J., 49:1 (2008), 109–116 |
1
|
|
2007 |
8. |
M. V. Korobkov, “Properties of the $C^1$-smooth functions with nowhere dense gradient range”, Sibirsk. Mat. Zh., 48:6 (2007), 1272–1284 ; Siberian Math. J., 48:6 (2007), 1019–1028 |
7
|
9. |
M. V. Korobkov, E. Yu. Panov, “Necessary and sufficient conditions for a curve to be the gradient range of a $C^1$-smooth function”, Sibirsk. Mat. Zh., 48:4 (2007), 789–810 ; Siberian Math. J., 48:4 (2007), 629–647 |
5
|
|
2006 |
10. |
M. V. Korobkov, E. Yu. Panov, “Isentropic solutions of quasilinear equations of the first order”, Mat. Sb., 197:5 (2006), 99–124 ; Sb. Math., 197:5 (2006), 727–752 |
9
|
11. |
M. V. Korobkov, “An analog of Sard's theorem for $C^1$-smooth functions of two variables”, Sibirsk. Mat. Zh., 47:5 (2006), 1083–1091 ; Siberian Math. J., 47:5 (2006), 889–895 |
7
|
|
2003 |
12. |
A. P. Kopylov, M. V. Korobkov, S. P. Ponomarev, “Stability in the Cauchy and Morera theorems for holomorphic functions and their spatial analogs”, Sibirsk. Mat. Zh., 44:1 (2003), 120–131 ; Siberian Math. J., 44:1 (2003), 99–108 |
|
2002 |
13. |
M. V. Korobkov, “Stability in the $C$-norm and $W^1_\infty$ of classes of Lipschitz functions of one variable”, Sibirsk. Mat. Zh., 43:5 (2002), 1026–1045 ; Siberian Math. J., 43:5 (2002), 827–842 |
2
|
|
2001 |
14. |
A. A. Egorov, M. V. Korobkov, “Stability of classes of affine mappings”, Sibirsk. Mat. Zh., 42:6 (2001), 1259–1277 ; Siberian Math. J., 42:6 (2001), 1047–1061 |
2
|
15. |
M. V. Korobkov, “A generalization of the Lagrange mean value theorem to the case of vector-valued mappings”, Sibirsk. Mat. Zh., 42:2 (2001), 349–353 ; Siberian Math. J., 42:2 (2001), 297–300 |
3
|
|
2000 |
16. |
A. A. Egorov, M. V. Korobkov, “Stability of classes of Lipschitz mappings, the Darboux theorem, and quasiconvex sets”, Sibirsk. Mat. Zh., 41:5 (2000), 1046–1059 ; Siberian Math. J., 41:5 (2000), 855–865 |
4
|
17. |
M. V. Korobkov, “On stability of classes of lipschitz mappings generated by compact sets of the space of linear mappings”, Sibirsk. Mat. Zh., 41:4 (2000), 792–810 ; Siberian Math. J., 41:4 (2000), 656–670 |
2
|
18. |
M. V. Korobkov, “On a generalization of the Darboux theorem to the multidimensional case”, Sibirsk. Mat. Zh., 41:1 (2000), 118–133 |
7
|
|
Presentations in Math-Net.Ru |
1. |
On applications of real analysis methods to steady-state Navier-Stokes system M. V. Korobkov
III International Conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”, dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov July 8, 2023 15:00
|
2. |
Проблема Лерэ для стационарной системы уравнений Навье-Стокса и смежные вопросы теории функций M. V. Korobkov
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS March 23, 2017 11:00
|
3. |
Доказательство аналогов теоремы Морса–Сарда для соболевских классов
функций методами алгебраической геометрии с приложениями в гидродинамике M. V. Korobkov
Shafarevich Seminar March 21, 2017 15:00
|
4. |
On capacity for Sobolev–Lorentz classes of mappings M. V. Korobkov
International Conference "Geometric Analysis and Control Theory" December 9, 2016 11:40
|
5. |
Теорема Морса-Сарда для соболевских пространств при минимальных предположениях регулярности с приложениями в гидродинамике M. V. Korobkov
Seminar on Theory of Functions of Real Variables October 7, 2016 18:30
|
6. |
On the Morse–Sard theorem for the sharp case of Sobolev mappings and its applications in fluid mechanics Mikhail Korobkov
New Trends in Mathematical and Theoretical Physics October 6, 2016 16:10
|
7. |
Теорема Морса-Сарда для соболевских пространств при минимальных предположениях регулярности с приложениями в гидродинамике M. V. Korobkov
Seminar on Theory of Functions of Several Real Variables and Its Applications to Problems of Mathematical Physics October 5, 2016 16:00
|
8. |
The Liouville
theorem for the steady Navier
–
Stokes problem in axially symmetric 3D
spatial case M. V. Korobkov
The International Conference "Geometric Control Theory and Analysis on Metric Structures" August 8, 2014 11:00
|
|
|
Organisations |
|
|
|
|