Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Korobkov, Mikhail Vyacheslavovich

E-mail:

https://www.mathnet.ru/eng/person21343
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/651360

Publications in Math-Net.Ru Citations
2019
1. A. Ferone, M. V. Korobkov, A. Roviello, “The Morse–Sard theorem and Luzin $N$-property: a new synthesis for smooth and Sobolev mappings”, Sibirsk. Mat. Zh., 60:5 (2019),  1171–1185  mathnet  elib; Siberian Math. J., 60:5 (2019), 916–926  isi  scopus 3
2016
2. Anatoly P. Kopylov, Mikhail V. Korobkov, “Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold”, J. Sib. Fed. Univ. Math. Phys., 9:3 (2016),  320–331  mathnet  isi 1
2014
3. M. V. Korobkov, K. Pileckas, V. V. Pukhnachov, R. Russo, “The flux problem for the Navier–Stokes equations”, Uspekhi Mat. Nauk, 69:6(420) (2014),  115–176  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 69:6 (2014), 1065–1122  isi  scopus 40
2009
4. M. V. Korobkov, “A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains”, Mat. Tr., 12:2 (2009),  52–96  mathnet  mathscinet  elib; Siberian Adv. Math., 20:4 (2010), 256–284 5
5. M. V. Korobkov, “Properties of $C^1$-smooth mappings with one-dimensional gradient range”, Sibirsk. Mat. Zh., 50:5 (2009),  1105–1122  mathnet  mathscinet  elib; Siberian Math. J., 50:5 (2009), 874–886  isi  elib  scopus 5
2008
6. M. V. Korobkov, “Necessary and sufficient conditions for unique determination of plane domains”, Sibirsk. Mat. Zh., 49:3 (2008),  548–567  mathnet  mathscinet  zmath; Siberian Math. J., 49:3 (2008), 436–451  isi  scopus 4
7. M. V. Korobkov, “An example of a $C^1$-smooth function whose gradient range is an arc with no tangent at any point”, Sibirsk. Mat. Zh., 49:1 (2008),  134–144  mathnet  mathscinet  zmath  elib; Siberian Math. J., 49:1 (2008), 109–116  isi  elib  scopus 1
2007
8. M. V. Korobkov, “Properties of the $C^1$-smooth functions with nowhere dense gradient range”, Sibirsk. Mat. Zh., 48:6 (2007),  1272–1284  mathnet  mathscinet  zmath  elib; Siberian Math. J., 48:6 (2007), 1019–1028  isi  elib  scopus 7
9. M. V. Korobkov, E. Yu. Panov, “Necessary and sufficient conditions for a curve to be the gradient range of a $C^1$-smooth function”, Sibirsk. Mat. Zh., 48:4 (2007),  789–810  mathnet  mathscinet  zmath  elib; Siberian Math. J., 48:4 (2007), 629–647  isi  elib  scopus 5
2006
10. M. V. Korobkov, E. Yu. Panov, “Isentropic solutions of quasilinear equations of the first order”, Mat. Sb., 197:5 (2006),  99–124  mathnet  mathscinet  zmath  elib; Sb. Math., 197:5 (2006), 727–752  isi  scopus 9
11. M. V. Korobkov, “An analog of Sard's theorem for $C^1$-smooth functions of two variables”, Sibirsk. Mat. Zh., 47:5 (2006),  1083–1091  mathnet  mathscinet  zmath  elib; Siberian Math. J., 47:5 (2006), 889–895  isi  scopus 7
2003
12. A. P. Kopylov, M. V. Korobkov, S. P. Ponomarev, “Stability in the Cauchy and Morera theorems for holomorphic functions and their spatial analogs”, Sibirsk. Mat. Zh., 44:1 (2003),  120–131  mathnet  mathscinet  zmath; Siberian Math. J., 44:1 (2003), 99–108  isi
2002
13. M. V. Korobkov, “Stability in the $C$-norm and $W^1_\infty$ of classes of Lipschitz functions of one variable”, Sibirsk. Mat. Zh., 43:5 (2002),  1026–1045  mathnet  mathscinet  zmath; Siberian Math. J., 43:5 (2002), 827–842  isi 2
2001
14. A. A. Egorov, M. V. Korobkov, “Stability of classes of affine mappings”, Sibirsk. Mat. Zh., 42:6 (2001),  1259–1277  mathnet  mathscinet  zmath; Siberian Math. J., 42:6 (2001), 1047–1061  isi 2
15. M. V. Korobkov, “A generalization of the Lagrange mean value theorem to the case of vector-valued mappings”, Sibirsk. Mat. Zh., 42:2 (2001),  349–353  mathnet  mathscinet  zmath; Siberian Math. J., 42:2 (2001), 297–300  isi 3
2000
16. A. A. Egorov, M. V. Korobkov, “Stability of classes of Lipschitz mappings, the Darboux theorem, and quasiconvex sets”, Sibirsk. Mat. Zh., 41:5 (2000),  1046–1059  mathnet  mathscinet; Siberian Math. J., 41:5 (2000), 855–865  isi 4
17. M. V. Korobkov, “On stability of classes of lipschitz mappings generated by compact sets of the space of linear mappings”, Sibirsk. Mat. Zh., 41:4 (2000),  792–810  mathnet  mathscinet  zmath; Siberian Math. J., 41:4 (2000), 656–670  isi 2
18. M. V. Korobkov, “On a generalization of the Darboux theorem to the multidimensional case”, Sibirsk. Mat. Zh., 41:1 (2000),  118–133  mathnet  mathscinet  zmath 7

Presentations in Math-Net.Ru
1. On applications of real analysis methods to steady-state Navier-Stokes system
M. V. Korobkov
III International Conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”, dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov
July 8, 2023 15:00   
2. Проблема Лерэ для стационарной системы уравнений Навье-Стокса и смежные вопросы теории функций
M. V. Korobkov
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS
March 23, 2017 11:00
3. Доказательство аналогов теоремы Морса–Сарда для соболевских классов функций методами алгебраической геометрии с приложениями в гидродинамике
M. V. Korobkov
Shafarevich Seminar
March 21, 2017 15:00
4. On capacity for Sobolev–Lorentz classes of mappings
M. V. Korobkov
International Conference "Geometric Analysis and Control Theory"
December 9, 2016 11:40   
5. Теорема Морса-Сарда для соболевских пространств при минимальных предположениях регулярности с приложениями в гидродинамике
M. V. Korobkov
Seminar on Theory of Functions of Real Variables
October 7, 2016 18:30
6. On the Morse–Sard theorem for the sharp case of Sobolev mappings and its applications in fluid mechanics
Mikhail Korobkov
New Trends in Mathematical and Theoretical Physics
October 6, 2016 16:10   
7. Теорема Морса-Сарда для соболевских пространств при минимальных предположениях регулярности с приложениями в гидродинамике
M. V. Korobkov
Seminar on Theory of Functions of Several Real Variables and Its Applications to Problems of Mathematical Physics
October 5, 2016 16:00   
8. The Liouville theorem for the steady Navier – Stokes problem in axially symmetric 3D spatial case
M. V. Korobkov
The International Conference "Geometric Control Theory and Analysis on Metric Structures"
August 8, 2014 11:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024