Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 5, Pages 1105–1122 (Mi smj2034)  

This article is cited in 5 scientific papers (total in 5 papers)

Properties of C1C1-smooth mappings with one-dimensional gradient range

M. V. Korobkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (411 kB) Citations (5)
References:
Abstract: We find necessary and sufficient conditions for a curve in Rm×n to be the gradient range of a C1-smooth function v:ΩRnRm. We show that this curve has tangents in a weak sense; these tangents are rank 1 matrices and their directions constitute a function of bounded variation. We prove also that in this case v satisfies an analog of Sard's theorem, while the level sets of the gradient mapping v:ΩRm×n are hyperplanes.
Keywords: C1-smooth function, gradient range, curve, one-dimensional set, Sard's theorem.
Received: 18.03.2008
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 5, Pages 874–886
DOI: https://doi.org/10.1007/s11202-009-0098-0
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: M. V. Korobkov, “Properties of C1-smooth mappings with one-dimensional gradient range”, Sibirsk. Mat. Zh., 50:5 (2009), 1105–1122; Siberian Math. J., 50:5 (2009), 874–886
Citation in format AMSBIB
\Bibitem{Kor09}
\by M.~V.~Korobkov
\paper Properties of $C^1$-smooth mappings with one-dimensional gradient range
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 5
\pages 1105--1122
\mathnet{http://mi.mathnet.ru/smj2034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603855}
\elib{https://elibrary.ru/item.asp?id=12961544}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 5
\pages 874--886
\crossref{https://doi.org/10.1007/s11202-009-0098-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273176100012}
\elib{https://elibrary.ru/item.asp?id=15299200}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350759710}
Linking options:
  • https://www.mathnet.ru/eng/smj2034
  • https://www.mathnet.ru/eng/smj/v50/i5/p1105
  • This publication is cited in the following 5 articles:
    1. Peter Gladbach, Heiner Olbermann, “Variational competition between the full Hessian and its determinant for convex functions”, Nonlinear Analysis, 242 (2024), 113498  crossref
    2. Camillo De Lellis, Mohammad Reza Pakzad, “The geometry of C1,α flat isometric immersions”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2024, 1  crossref
    3. Mohammad Reza Pakzad, “Convexity of weakly regular surfaces of distributional nonnegative intrinsic curvature”, Journal of Functional Analysis, 287:11 (2024), 110616  crossref
    4. Lewicka M. Pakzad M.R., “Convex Integration For the Monge-Ampere Equation in Two Dimensions”, Anal. PDE, 10:3 (2017), 695–727  crossref  mathscinet  zmath  isi  scopus
    5. Bourgain J. Korobkov M.V. Kristensen J., “On the Morse-Sard Property and Level Sets of Sobolev and Bv Functions”, Rev. Mat. Iberoam., 29:1 (2013), 1–23  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:514
    Full-text PDF :808
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025