Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 5, Pages 1105–1122 (Mi smj2034)  

This article is cited in 5 scientific papers (total in 5 papers)

Properties of $C^1$-smooth mappings with one-dimensional gradient range

M. V. Korobkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (411 kB) Citations (5)
References:
Abstract: We find necessary and sufficient conditions for a curve in $\mathbb R^{m\times n}$ to be the gradient range of a $C^1$-smooth function $v\colon\Omega\subset\mathbb R^n\to\mathbb R^m$. We show that this curve has tangents in a weak sense; these tangents are rank 1 matrices and their directions constitute a function of bounded variation. We prove also that in this case $v$ satisfies an analog of Sard's theorem, while the level sets of the gradient mapping $\nabla v\colon\Omega\to\mathbb R^{m\times n}$ are hyperplanes.
Keywords: $C^1$-smooth function, gradient range, curve, one-dimensional set, Sard's theorem.
Received: 18.03.2008
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 5, Pages 874–886
DOI: https://doi.org/10.1007/s11202-009-0098-0
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: M. V. Korobkov, “Properties of $C^1$-smooth mappings with one-dimensional gradient range”, Sibirsk. Mat. Zh., 50:5 (2009), 1105–1122; Siberian Math. J., 50:5 (2009), 874–886
Citation in format AMSBIB
\Bibitem{Kor09}
\by M.~V.~Korobkov
\paper Properties of $C^1$-smooth mappings with one-dimensional gradient range
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 5
\pages 1105--1122
\mathnet{http://mi.mathnet.ru/smj2034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603855}
\elib{https://elibrary.ru/item.asp?id=12961544}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 5
\pages 874--886
\crossref{https://doi.org/10.1007/s11202-009-0098-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273176100012}
\elib{https://elibrary.ru/item.asp?id=15299200}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350759710}
Linking options:
  • https://www.mathnet.ru/eng/smj2034
  • https://www.mathnet.ru/eng/smj/v50/i5/p1105
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :715
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024