Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 6, Pages 1272–1284 (Mi smj1806)  

This article is cited in 7 scientific papers (total in 7 papers)

Properties of the $C^1$-smooth functions with nowhere dense gradient range

M. V. Korobkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (353 kB) Citations (7)
References:
Abstract: One of the main results of the present article is as follows
Theorem. {\it Let $v\colon\Omega\to\mathbb R$ be a $C^1$-smooth function on a domain $\Omega\subset\mathbb R^2$. Suppose that $\operatorname{Int}\nabla v(\Omega)=\varnothing$. Then, for every point $z\in\Omega$, there is a straight line $L\ni z$ such that $\nabla v\equiv\mathrm{const}$ on the connected component of the set $L\cap\Omega$ containing $z$}.
Also, we prove that, under the conditions of the theorem, the range of the gradient $\nabla v(\Omega)$ is locally a curve and this curve has tangents in the weak sense and the direction of these tangents is a function of bounded variation.
Keywords: $C^1$-smooth function, gradient range, nowhere dense set.
Received: 02.02.2006
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 6, Pages 1019–1028
DOI: https://doi.org/10.1007/s11202-007-0104-3
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: M. V. Korobkov, “Properties of the $C^1$-smooth functions with nowhere dense gradient range”, Sibirsk. Mat. Zh., 48:6 (2007), 1272–1284; Siberian Math. J., 48:6 (2007), 1019–1028
Citation in format AMSBIB
\Bibitem{Kor07}
\by M.~V.~Korobkov
\paper Properties of the $C^1$-smooth functions with nowhere dense gradient range
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 6
\pages 1272--1284
\mathnet{http://mi.mathnet.ru/smj1806}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2397509}
\zmath{https://zbmath.org/?q=an:1164.26325}
\elib{https://elibrary.ru/item.asp?id=9552795}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 6
\pages 1019--1028
\crossref{https://doi.org/10.1007/s11202-007-0104-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251724400006}
\elib{https://elibrary.ru/item.asp?id=13538760}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36749064416}
Linking options:
  • https://www.mathnet.ru/eng/smj1806
  • https://www.mathnet.ru/eng/smj/v48/i6/p1272
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:626
    Full-text PDF :144
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024