Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2016, Volume 9, Issue 3, Pages 320–331
DOI: https://doi.org/10.17516/1997-1397-2016-9-3-320-331
(Mi jsfu490)
 

This article is cited in 1 scientific paper (total in 1 paper)

Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold

Anatoly P. Kopylovab, Mikhail V. Korobkovba

a Sobolev Institute of Mathematics SB RAS, 4 Acad. Koptyug avenue, Novosibirsk, 630090, Russia
b Novosibirsk State University, Pirogova, 2, Novosibirsk, 630090, Russia
Full-text PDF (185 kB) Citations (1)
References:
Abstract: Developing A.D. Aleksandrov's ideas, the first author proposed the following approach to study of rigidity problems for the boundary of a $C^0$-submanifold in a smooth Riemannian manifold. Let $Y_1$ be a two-dimensional compact connected $C^0$-submanifold with non-empty boundary in some smooth two-dimensional Riemannian manifold $(X, g)$ without boundary. Let us consider the intrinsic metric (the infimum of the lengths of paths, connecting a pair of points".) of the interior $\mathop{\rm Int} Y_1$ of $Y_1$, and extend it by continuity (operation $ \varliminf$) to the boundary points of $\partial Y_1$. In this paper the rigidity conditions are studied, i.e., when the constructed limiting metric defines $\partial Y_1$ up to isometry of ambient space $(X,g)$. We also consider the case $\dim Y_j = \dim X = n$, $n>2$.
Keywords: Riemannian manifold, intrinsic metric, induced boundary metric, strict convexity of submanifold, geodesics, rigidity conditions.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00768_a
15-01-08275_a
The authors were partially supported by the RFBR for, grants 14-01-00768-a and 15-01-08275-a.
Received: 20.03.2016
Received in revised form: 28.04.2016
Accepted: 26.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: English
Citation: Anatoly P. Kopylov, Mikhail V. Korobkov, “Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold”, J. Sib. Fed. Univ. Math. Phys., 9:3 (2016), 320–331
Citation in format AMSBIB
\Bibitem{KopKor16}
\by Anatoly~P.~Kopylov, Mikhail~V.~Korobkov
\paper Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2016
\vol 9
\issue 3
\pages 320--331
\mathnet{http://mi.mathnet.ru/jsfu490}
\crossref{https://doi.org/10.17516/1997-1397-2016-9-3-320-331}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412010000007}
Linking options:
  • https://www.mathnet.ru/eng/jsfu490
  • https://www.mathnet.ru/eng/jsfu/v9/i3/p320
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :101
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024