Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kulikov, Anatolii Nikolaevich

Statistics Math-Net.Ru
Total publications: 44
Scientific articles: 42
Presentations: 2

Number of views:
This page:1086
Abstract pages:9312
Full texts:3808
References:1512
Associate professor
Doctor of physico-mathematical sciences (2018)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
Keywords: nonlinear panel flutter, abstract evolutionary equations, stability, bifurcations, normal forms, hard excitation of vibrations.
UDC: 517.917, 517.9, 519.624.2, 517.956.4
MSC: 34A30, 34D08, 34L40, 90C25, 65J05, 37H20

Subject:

theory of dynamical systems with infinite-dimensional phase space, invariant manifolds, normal forms, bifurcations

   
Main publications:
  1. V. S. Kolesov, Yu. S. Kolesov, A. N. Kulikov, I. I. Fedik, “Ob odnoi matematicheskoi zadache teorii uprugoi ustoichivosti”, Prikladnaya matematika i mekhanika, 42:3 (1978), 458–465

https://www.mathnet.ru/eng/person18266
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/216940

Publications in Math-Net.Ru Citations
2024
1. A. N. Kulikov, “On the uniqueness problem for a central invariant manifold”, TMF, 220:1 (2024),  59–73  mathnet  mathscinet; Theoret. and Math. Phys., 220:1 (2024), 1110–1121  scopus
2023
2. A. N. Kulikov, D. A. Kulikov, “The influence of delay and spatial factors on the dynamics of solutions in the mathematical model “supply-demand””, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230 (2023),  75–87  mathnet
3. A. N. Kulikov, D. A. Kulikov, D. G. Frolov, “The influence of competition on the dynamics of macroeconomic systems”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 228 (2023),  20–31  mathnet
4. A. N. Kulikov, D. A. Kulikov, “Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto–Sivashinsky equation with allowance for dispersion”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226 (2023),  69–79  mathnet
5. A. N. Kulikov, D. A. Kulikov, “Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation”, TMF, 215:3 (2023),  339–359  mathnet  mathscinet; Theoret. and Math. Phys., 215:3 (2023), 751–768  scopus
2022
6. A. N. Kulikov, “Invariant tori of the weakly dissipative version of the Ginzburg—Landau equation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216 (2022),  66–75  mathnet
7. A. N. Kulikov, D. A. Kulikov, D. G. Frolov, “The Keynes model of the business cycle and the problem of diffusion instability”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 207 (2022),  77–90  mathnet
8. A. N. Kulikov, D. A. Kulikov, “Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation”, TMF, 212:1 (2022),  40–61  mathnet  mathscinet; Theoret. and Math. Phys., 212:1 (2022), 925–943  scopus 2
9. A. N. Kulikov, D. A. Kulikov, “Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 38:1 (2022),  9–27  mathnet
2021
10. A. N. Kulikov, D. A. Kulikov, “Invariant manifolds of a weakly dissipative version of the nonlocal Ginzburg–Landau equation”, Avtomat. i Telemekh., 2021, no. 2,  94–110  mathnet  elib; Autom. Remote Control, 82:2 (2021), 264–277  isi  scopus 7
11. A. N. Kulikov, D. A. Kulikov, “On the possibility of implementing the Landau–Hopf scenario of transition to turbulence in the generalized model “multiplier-accelerator””, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 203 (2021),  39–49  mathnet
12. A. N. Kulikov, D. A. Kulikov, “Attractor of the generalized Cahn–Hilliard equation, on which all solutions are unstable”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195 (2021),  57–67  mathnet
13. A. N. Kulikov, D. A. Kulikov, “Cahn–Hilliard equation with two spatial variables. Pattern formation”, TMF, 207:3 (2021),  438–457  mathnet  elib; Theoret. and Math. Phys., 207:3 (2021), 782–798  isi  scopus 3
2020
14. A. N. Kulikov, “Inertial invariant manifolds of a nonlinear semigroup of operators in a Hilbert space”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 186 (2020),  57–66  mathnet 6
15. A. N. Kulikov, D. A. Kulikov, “A possibility of realizing the Landau–Hopf scenario in the problem of tube oscillations under the action of a fluid flow”, TMF, 203:1 (2020),  78–90  mathnet  mathscinet  elib; Theoret. and Math. Phys., 203:1 (2020), 501–511  isi  scopus 5
16. A. N. Kulikov, D. A. Kulikov, “One-phase and two-phase solutions of the focusing nonlinear Schrodinger equation”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 2,  18–34  mathnet  elib
2019
17. A. N. Kulikov, “Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 168 (2019),  45–52  mathnet
18. A. N. Kulikov, D. A. Kulikov, “Local bifurcations in the Cahn–Hilliard and Kuramoto–Sivashinsky equations and in their generalizations”, Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019),  670–683  mathnet  elib; Comput. Math. Math. Phys., 59:4 (2019), 630–643  isi  scopus 15
2018
19. A. N. Kulikov, A. V. Sekatskaya, “Local Attractors in One Boundary-Value Problem for the Kuramoto–Sivashinsky Equation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 148 (2018),  58–65  mathnet  mathscinet; J. Math. Sci. (N. Y.), 248:4 (2020), 430–437 1
20. A. N. Kulikov, D. A. Kulikov, “The Kuramoto–Sivashinsky equation. A local attractor filled with unstable periodic solutions”, Model. Anal. Inform. Sist., 25:1 (2018),  92–101  mathnet  elib 6
2017
21. A. N. Kulikov, D. A. Kulikov, “Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation”, Avtomat. i Telemekh., 2017, no. 11,  20–33  mathnet  elib; Autom. Remote Control, 78:11 (2017), 1955–1966  isi  scopus 11
2016
22. A. N. Kulikov, D. A. Kulikov, “Nonlocal model for the formation of ripple topography induced by ion bombardment. Nonhomogeneous nanostructures”, Matem. Mod., 28:3 (2016),  33–50  mathnet  elib 7
2015
23. A. M. Kovaleva, A. N. Kulikov, D. A. Kulikov, “Stability and bifurcations of undulate solutions for one functional-differential equation”, Izv. IMI UdGU, 2015, no. 2(46),  60–68  mathnet  elib 2
2012
24. A. N. Kulikov, D. A. Kulikov, “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012),  930–945  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 52:4 (2012), 800–814  isi  elib  scopus 31
2011
25. A. N. Kulikov, G. V. Pilipenko, “Resonances in the problem of the panel flutter in a supersonic gas flow”, Model. Anal. Inform. Sist., 18:1 (2011),  56–67  mathnet
26. A. N. Kulikov, D. A. Kulikov, A. S. Rudyi, “Bifurcation of the nanostructures induced by ion bombardment”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 4,  86–99  mathnet 8
27. A. N. Kulikov, “1 : 3 Resonance is a possible cause of nonlinear panel flutter”, Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1266–1279  mathnet  mathscinet; Comput. Math. Math. Phys., 51:7 (2011), 1181–1193  isi  scopus 3
2009
28. E. S. Kokuykin, A. N. Kulikov, “Business cycles and torus in the non-homogeneous multiplier-accelerator model”, Model. Anal. Inform. Sist., 16:4 (2009),  86–95  mathnet  elib 1
29. A. N. Kulikov, D. A. Kulikov, “After critical and precritical bifurcations of progressive wave in a generalized Ginzburg–Landau equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 4,  71–78  mathnet 2
2008
30. E. V. Korshunova, A. N. Kulikov, “Spatial non-homogeneous invariant tori in the Multiplier-Accelerator model”, Model. Anal. Inform. Sist., 15:1 (2008),  45–50  mathnet 1
31. A. E. Kotikov, A. N. Kulikov, “Travelling waves bifurcation of the modified Ginzburg-Landau's equation”, Model. Anal. Inform. Sist., 15:1 (2008),  10–15  mathnet 1
32. A. N. Kulikov, “The attractors of two boundary value problems for a modifieded nonlinear telegraph equation”, Nelin. Dinam., 4:1 (2008),  57–68  mathnet 9
33. A. N. Kulikov, D. A. Kulikov, “Bifurcation of autowaves of generalized cubic Schrödinger equation with three independent variables”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 3,  23–34  mathnet 3
2004
34. A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain”, Mat. Zametki, 75:5 (2004),  663–669  mathnet  mathscinet  zmath  elib; Math. Notes, 75:5 (2004), 617–622  isi
2003
35. A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariant Tori of a Class of Point Transformations: Preservation of an Invariant Torus Under Perturbations”, Differ. Uravn., 39:6 (2003),  738–753  mathnet  mathscinet; Differ. Equ., 39:6 (2003), 775–790 25
36. A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariant Tori of a Class of Point Mappings: The Annulus Principle”, Differ. Uravn., 39:5 (2003),  584–601  mathnet  mathscinet; Differ. Equ., 39:5 (2003), 614–631 21
2001
37. A. N. Kulikov, “Attractors of a Nonlinear Boundary Value Problem Arising in Aeroelasticity”, Differ. Uravn., 37:3 (2001),  397–401  mathnet  mathscinet; Differ. Equ., 37:3 (2001), 425–429 2
1999
38. Yu. S. Kolesov, A. N. Kulikov, “Bifurcation of auto-oscillations in the classical system of telegraph equations with a nonclassical nonlinear boundary condition”, Mat. Zametki, 66:6 (1999),  948–951  mathnet  mathscinet  zmath; Math. Notes, 66:6 (1999), 784–787  isi 1
1993
39. A. N. Kulikov, “An analogue of the Hopf bifurcation theorem in a problem on the mathematical investigation of a nonlinear panel flutter with a small damping coefficient”, Differ. Uravn., 29:5 (1993),  780–785  mathnet  mathscinet; Differ. Equ., 29:5 (1993), 666–671
1992
40. A. N. Kulikov, “Nonlinear flutter panel: the risk of hard excitation of vibrations”, Differ. Uravn., 28:6 (1992),  1080–1082  mathnet  mathscinet  zmath 2
1990
41. A. N. Kulikov, V. R. Fazylov, “Convex optimization with prescribed accuracy”, Zh. Vychisl. Mat. Mat. Fiz., 30:5 (1990),  663–671  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 30:3 (1990), 16–22 4
1984
42. A. N. Kulikov, V. R. Fazylov, “A finite method for solving systems of convex inequalities”, Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 11,  59–63  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 28:11 (1984), 75–80 2

2021
43. V. V. Abramov, D. I. Boyarkin, I. M. Burkin, K. V. Bukhensky, O. V. Druzhinina, D. K. Egorova, R. V. Zhalnin, I. V. Ionova, A. N. Konenkov, A. N. Kulikov, A. G. Kushner, E. Yu. Liskina, S. S. Mamonov, O. N. Masina, A. K. Murtazov, A. Yu. Pavlov, P. M. Simonov, A. O. Harlamova, T. Ph. Mamedova, S. M. Muryumin, V. I. Safonkin, G. A. Smolkin, L. A. Sukharev, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, “In memory of Terekhin Mihail Tihonovich”, Zhurnal SVMO, 23:1 (2021),  110–111  mathnet  elib
2019
44. V. V. Abramov, D. I. Boyarkin, I. M. Burkin, K. V. Bukhensky, O. V. Druzhinina, D. K. Egorova, R. V. Zhalnin, I. V. Ionova, A. N. Konenkov, A. N. Kulikov, A. G. Kushner, E. Yu. Liskina, S. S. Mamonov, O. N. Masina, A. K. Murtazov, A. Yu. Pavlov, P. M. Simonov, A. O. Kharlamova, T. Ph. Mamedova, S. M. Muryumin, V. I. Safonkin, G. A. Smolkin, L. A. Sukharev, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, “To the eighty-fifth anniversary of Mikhail Tikhonovich Terekhin”, Zhurnal SVMO, 21:1 (2019),  114–115  mathnet

Presentations in Math-Net.Ru
1. Local attractors of the Cahn-Hilliard-Oono equation
A. N. Kulikov, D. A. Kulikov
III International Conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”, dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov
July 8, 2023 13:10   
2. Local bifurcations in the periodic boundary value problem for the Kuramoto-Sivashinsky equation
A. N. Kulikov, D. A. Kulikov
International Conference on Differential Equations and Dynamical Systems
July 8, 2014 16:10

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024