theory of dynamical systems with infinite-dimensional phase space, invariant manifolds, normal forms, bifurcations
Main publications:
V. S. Kolesov, Yu. S. Kolesov, A. N.
Kulikov, I. I. Fedik, “Ob odnoi matematicheskoi zadache teorii
uprugoi ustoichivosti”, Prikladnaya matematika i mekhanika, 42:3 (1978), 458–465
A. N. Kulikov, “On the uniqueness problem for a central invariant manifold”, TMF, 220:1 (2024), 59–73; Theoret. and Math. Phys., 220:1 (2024), 1110–1121
2023
2.
A. N. Kulikov, D. A. Kulikov, “The influence of delay and spatial factors on the dynamics of solutions in the mathematical model “supply-demand””, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230 (2023), 75–87
3.
A. N. Kulikov, D. A. Kulikov, D. G. Frolov, “The influence of competition on the dynamics of macroeconomic systems”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 228 (2023), 20–31
4.
A. N. Kulikov, D. A. Kulikov, “Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto–Sivashinsky equation with allowance for dispersion”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226 (2023), 69–79
5.
A. N. Kulikov, D. A. Kulikov, “Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation”, TMF, 215:3 (2023), 339–359; Theoret. and Math. Phys., 215:3 (2023), 751–768
2022
6.
A. N. Kulikov, “Invariant tori of the weakly dissipative version of the Ginzburg—Landau equation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216 (2022), 66–75
7.
A. N. Kulikov, D. A. Kulikov, D. G. Frolov, “The Keynes model of the business cycle and the problem of diffusion instability”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 207 (2022), 77–90
8.
A. N. Kulikov, D. A. Kulikov, “Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation”, TMF, 212:1 (2022), 40–61; Theoret. and Math. Phys., 212:1 (2022), 925–943
A. N. Kulikov, D. A. Kulikov, “Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 38:1 (2022), 9–27
2021
10.
A. N. Kulikov, D. A. Kulikov, “Invariant manifolds of a weakly dissipative version of the nonlocal Ginzburg–Landau equation”, Avtomat. i Telemekh., 2021, no. 2, 94–110; Autom. Remote Control, 82:2 (2021), 264–277
A. N. Kulikov, D. A. Kulikov, “On the possibility of implementing the Landau–Hopf scenario of transition to turbulence in the generalized model “multiplier-accelerator””, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 203 (2021), 39–49
12.
A. N. Kulikov, D. A. Kulikov, “Attractor of the generalized Cahn–Hilliard equation, on which all solutions are unstable”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195 (2021), 57–67
13.
A. N. Kulikov, D. A. Kulikov, “Cahn–Hilliard equation with two spatial variables. Pattern formation”, TMF, 207:3 (2021), 438–457; Theoret. and Math. Phys., 207:3 (2021), 782–798
A. N. Kulikov, “Inertial invariant manifolds of a nonlinear semigroup of operators in a Hilbert space”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 186 (2020), 57–66
A. N. Kulikov, D. A. Kulikov, “A possibility of realizing the Landau–Hopf scenario in the problem of tube oscillations under the action of a fluid flow”, TMF, 203:1 (2020), 78–90; Theoret. and Math. Phys., 203:1 (2020), 501–511
A. N. Kulikov, D. A. Kulikov, “One-phase and two-phase solutions of the focusing nonlinear Schrodinger equation”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 2, 18–34
2019
17.
A. N. Kulikov, “Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 168 (2019), 45–52
18.
A. N. Kulikov, D. A. Kulikov, “Local bifurcations in the Cahn–Hilliard and Kuramoto–Sivashinsky equations and in their generalizations”, Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019), 670–683; Comput. Math. Math. Phys., 59:4 (2019), 630–643
A. N. Kulikov, A. V. Sekatskaya, “Local Attractors in One Boundary-Value Problem for the Kuramoto–Sivashinsky Equation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 148 (2018), 58–65; J. Math. Sci. (N. Y.), 248:4 (2020), 430–437
A. N. Kulikov, D. A. Kulikov, “The Kuramoto–Sivashinsky equation. A local attractor filled with unstable periodic solutions”, Model. Anal. Inform. Sist., 25:1 (2018), 92–101
A. N. Kulikov, D. A. Kulikov, “Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation”, Avtomat. i Telemekh., 2017, no. 11, 20–33; Autom. Remote Control, 78:11 (2017), 1955–1966
A. N. Kulikov, D. A. Kulikov, “Nonlocal model for the formation of ripple topography induced by ion bombardment. Nonhomogeneous nanostructures”, Matem. Mod., 28:3 (2016), 33–50
A. M. Kovaleva, A. N. Kulikov, D. A. Kulikov, “Stability and bifurcations of undulate solutions for one functional-differential equation”, Izv. IMI UdGU, 2015, no. 2(46), 60–68
A. N. Kulikov, D. A. Kulikov, “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012), 930–945; Comput. Math. Math. Phys., 52:4 (2012), 800–814
A. N. Kulikov, G. V. Pilipenko, “Resonances in the problem of the panel flutter in a supersonic gas flow”, Model. Anal. Inform. Sist., 18:1 (2011), 56–67
26.
A. N. Kulikov, D. A. Kulikov, A. S. Rudyi, “Bifurcation of the nanostructures induced by ion bombardment”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 4, 86–99
A. N. Kulikov, “1 : 3 Resonance is a possible cause of nonlinear panel flutter”, Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011), 1266–1279; Comput. Math. Math. Phys., 51:7 (2011), 1181–1193
E. S. Kokuykin, A. N. Kulikov, “Business cycles and torus in the non-homogeneous multiplier-accelerator model”, Model. Anal. Inform. Sist., 16:4 (2009), 86–95
A. N. Kulikov, D. A. Kulikov, “After critical and precritical bifurcations of progressive wave in a generalized Ginzburg–Landau equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 4, 71–78
E. V. Korshunova, A. N. Kulikov, “Spatial non-homogeneous invariant tori in the Multiplier-Accelerator model”, Model. Anal. Inform. Sist., 15:1 (2008), 45–50
A. E. Kotikov, A. N. Kulikov, “Travelling waves bifurcation of the modified Ginzburg-Landau's equation”, Model. Anal. Inform. Sist., 15:1 (2008), 10–15
A. N. Kulikov, D. A. Kulikov, “Bifurcation of autowaves of generalized cubic Schrödinger equation with three independent variables”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 3, 23–34
A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain”, Mat. Zametki, 75:5 (2004), 663–669; Math. Notes, 75:5 (2004), 617–622
2003
35.
A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariant Tori of a Class of Point Transformations: Preservation of an Invariant Torus Under Perturbations”, Differ. Uravn., 39:6 (2003), 738–753; Differ. Equ., 39:6 (2003), 775–790
A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariant Tori of a Class of Point Mappings: The Annulus Principle”, Differ. Uravn., 39:5 (2003), 584–601; Differ. Equ., 39:5 (2003), 614–631
A. N. Kulikov, “Attractors of a Nonlinear Boundary Value Problem Arising in Aeroelasticity”, Differ. Uravn., 37:3 (2001), 397–401; Differ. Equ., 37:3 (2001), 425–429
Yu. S. Kolesov, A. N. Kulikov, “Bifurcation of auto-oscillations in the classical system of telegraph equations with a nonclassical nonlinear boundary condition”, Mat. Zametki, 66:6 (1999), 948–951; Math. Notes, 66:6 (1999), 784–787
A. N. Kulikov, “An analogue of the Hopf bifurcation theorem in a problem on the mathematical investigation of a nonlinear panel flutter with a small damping coefficient”, Differ. Uravn., 29:5 (1993), 780–785; Differ. Equ., 29:5 (1993), 666–671
1992
40.
A. N. Kulikov, “Nonlinear flutter panel: the risk of hard excitation of vibrations”, Differ. Uravn., 28:6 (1992), 1080–1082
A. N. Kulikov, V. R. Fazylov, “A finite method for solving systems of convex inequalities”, Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 11, 59–63; Soviet Math. (Iz. VUZ), 28:11 (1984), 75–80
V. V. Abramov, D. I. Boyarkin, I. M. Burkin, K. V. Bukhensky, O. V. Druzhinina, D. K. Egorova, R. V. Zhalnin, I. V. Ionova, A. N. Konenkov, A. N. Kulikov, A. G. Kushner, E. Yu. Liskina, S. S. Mamonov, O. N. Masina, A. K. Murtazov, A. Yu. Pavlov, P. M. Simonov, A. O. Harlamova, T. Ph. Mamedova, S. M. Muryumin, V. I. Safonkin, G. A. Smolkin, L. A. Sukharev, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, “In memory of Terekhin Mihail Tihonovich”, Zhurnal SVMO, 23:1 (2021), 110–111
2019
44.
V. V. Abramov, D. I. Boyarkin, I. M. Burkin, K. V. Bukhensky, O. V. Druzhinina, D. K. Egorova, R. V. Zhalnin, I. V. Ionova, A. N. Konenkov, A. N. Kulikov, A. G. Kushner, E. Yu. Liskina, S. S. Mamonov, O. N. Masina, A. K. Murtazov, A. Yu. Pavlov, P. M. Simonov, A. O. Kharlamova, T. Ph. Mamedova, S. M. Muryumin, V. I. Safonkin, G. A. Smolkin, L. A. Sukharev, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, “To the eighty-fifth anniversary of Mikhail Tikhonovich Terekhin”, Zhurnal SVMO, 21:1 (2019), 114–115
Presentations in Math-Net.Ru
1.
Local attractors of the Cahn-Hilliard-Oono equation A. N. Kulikov, D. A. Kulikov III International Conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”, dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov July 8, 2023 13:10