Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 4, Pages 670–683
DOI: https://doi.org/10.1134/S0044466919040082
(Mi zvmmf10882)
 

This article is cited in 15 scientific papers (total in 15 papers)

Local bifurcations in the Cahn–Hilliard and Kuramoto–Sivashinsky equations and in their generalizations

A. N. Kulikov, D. A. Kulikov

Yaroslavl State University, Yaroslavl, 150003 Russia
Citations (15)
References:
Abstract: A periodic boundary value problem for a nonlinear evolution equation that takes the form of such well-known equations of mathematical physics as the Cahn–Hilliard, Kuramoto–Sivashinsky, and Kawahara equations for specific values of its coefficients is studied. Three bifurcation problems arising when the stability of the spatially homogeneous equilibrium states changes are studied. The analysis of these problems is based on the method of invariant manifolds, the normal form techniques for dynamic systems with an infinite-dimensional space of initial conditions, and asymptotic methods of analysis. Asymptotic formulas for the bifurcation solutions are found, and stability of these solutions is analyzed. For the Kuramoto–Sivashinsky and Kawahara equations, it is proved that a two-dimensional local attractor exists such that all solutions on it are unstable in Lyapunov's sense.
Key words: nonlinear boundary value problem, stability, local bifurcations, normal form, asymptotic formulas.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00672_а
This work was supported by the Russian Foundation for Basic Research, project no. 18-01-00672.
Received: 08.11.2017
Revised: 14.11.2018
Accepted: 14.11.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 4, Pages 630–643
DOI: https://doi.org/10.1134/S0965542519040080
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: A. N. Kulikov, D. A. Kulikov, “Local bifurcations in the Cahn–Hilliard and Kuramoto–Sivashinsky equations and in their generalizations”, Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019), 670–683; Comput. Math. Math. Phys., 59:4 (2019), 630–643
Citation in format AMSBIB
\Bibitem{KulKul19}
\by A.~N.~Kulikov, D.~A.~Kulikov
\paper Local bifurcations in the Cahn--Hilliard and Kuramoto--Sivashinsky equations and in their generalizations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 4
\pages 670--683
\mathnet{http://mi.mathnet.ru/zvmmf10882}
\crossref{https://doi.org/10.1134/S0044466919040082}
\elib{https://elibrary.ru/item.asp?id=37207505}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 4
\pages 630--643
\crossref{https://doi.org/10.1134/S0965542519040080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472036700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067445727}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10882
  • https://www.mathnet.ru/eng/zvmmf/v59/i4/p670
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:145
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024