Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 1, Pages 40–61
DOI: https://doi.org/10.4213/tmf10259
(Mi tmf10259)
 

This article is cited in 2 scientific papers (total in 2 papers)

Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation

A. N. Kulikov, D. A. Kulikov

Demidov Yaroslavl State University, Yaroslavl, Russia
Full-text PDF (520 kB) Citations (2)
References:
Abstract: We consider the periodic boundary value problem for two variants of a weakly dissipative complex Ginzburg–Landau equation. In the first case, we study a variant of such an equation that contains the cubic and quintic nonlinear terms. We study the problem of local bifurcations of traveling periodic waves under stability changes. We show that a countable set of two-dimensional invariant tori arises as a result of such bifurcations. Both types of bifurcations are possible in the considered formulation of the problem, soft (postcritical) and hard (subcritical) ones, depending on the choice of the coefficients in the equation. We obtain asymptotic formulas for the solutions forming the invariant tori. We also study the periodic boundary value problem for the equation that is called the nonlocal Ginzburg–Landau equation in physics. We show that the boundary value problem in the considered variant has an infinite-dimensional global attractor. We present the solutions forming such an attractor.
Keywords: Ginzburg–Landau equation, periodic boundary conditions, invariant manifold, single-mode solution, local bifurcation, global attractor, stability.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-886
The work is performed in the framework of the program for development of the regional mathematical center for science and education (Yaroslavl State University) under financial support from the Ministry of Science and Higher Education of Russian Federation (Agreement on subsidy No. 075-02-2022-886 from Federal budget).
Received: 25.01.2022
Revised: 27.03.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 1, Pages 925–943
DOI: https://doi.org/10.1134/S0040577922070042
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Kulikov, D. A. Kulikov, “Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation”, TMF, 212:1 (2022), 40–61; Theoret. and Math. Phys., 212:1 (2022), 925–943
Citation in format AMSBIB
\Bibitem{KulKul22}
\by A.~N.~Kulikov, D.~A.~Kulikov
\paper Local bifurcations and a~global attractor for two versions of the~weakly dissipative Ginzburg--Landau equation
\jour TMF
\yr 2022
\vol 212
\issue 1
\pages 40--61
\mathnet{http://mi.mathnet.ru/tmf10259}
\crossref{https://doi.org/10.4213/tmf10259}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461543}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212..925K}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 1
\pages 925--943
\crossref{https://doi.org/10.1134/S0040577922070042}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85134849638}
Linking options:
  • https://www.mathnet.ru/eng/tmf10259
  • https://doi.org/10.4213/tmf10259
  • https://www.mathnet.ru/eng/tmf/v212/i1/p40
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :36
    References:47
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024