Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 207, Number 3, Pages 438–457
DOI: https://doi.org/10.4213/tmf10029
(Mi tmf10029)
 

This article is cited in 3 scientific papers (total in 3 papers)

Cahn–Hilliard equation with two spatial variables. Pattern formation

A. N. Kulikov, D. A. Kulikov

Demidov Yaroslavl State University, Yaroslavl, Russia
Full-text PDF (508 kB) Citations (3)
References:
Abstract: We consider the Cahn–Hilliard equation in the case where its solution depends on two spatial variables, with homogeneous Dirichlet and Neumann boundary conditions, and also periodic boundary conditions. For these three boundary value problems, we study the problem of local bifurcations arising when changing stability by spatially homogeneous equilibrium states. We show that the nature of bifurcations that lead to spatially inhomogeneous solutions is strongly related to the choice of boundary conditions. In the case of homogeneous Dirichlet boundary conditions, spatially inhomogeneous equilibrium states occur in a neighborhood of a homogeneous equilibrium state, depending on both spatial variables. An alternative scenario is realized in analyzing the Neumann problem and the periodic boundary value problem. In these, as a result of bifurcations, invariant manifolds formed by spatially inhomogeneous solutions occur. The dimension of these manifolds ranges from 1 to 3. In analyzing three boundary value problems, we use methods of infinite-dimensional dynamical system theory and asymptotic methods. Using the integral manifold method together with the techniques of normal form theory allows us to analyze the stability of bifurcating invariant manifolds and also to derive asymptotic formulas for spatially inhomogeneous solutions forming these manifolds.
Keywords: Cahn–Hilliard equation, boundary value problem, stability, local bifurcation, invariant manifold, attractor, spatially inhomogeneous equilibrium state.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00672
This paper is supported by the Russian Foundation for Basic Research Grant No 18-01-00672.
Received: 11.12.2020
Revised: 20.02.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 207, Issue 3, Pages 782–798
DOI: https://doi.org/10.1134/S0040577921060088
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Kulikov, D. A. Kulikov, “Cahn–Hilliard equation with two spatial variables. Pattern formation”, TMF, 207:3 (2021), 438–457; Theoret. and Math. Phys., 207:3 (2021), 782–798
Citation in format AMSBIB
\Bibitem{KulKul21}
\by A.~N.~Kulikov, D.~A.~Kulikov
\paper Cahn--Hilliard equation with two spatial variables. Pattern formation
\jour TMF
\yr 2021
\vol 207
\issue 3
\pages 438--457
\mathnet{http://mi.mathnet.ru/tmf10029}
\crossref{https://doi.org/10.4213/tmf10029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...207..782K}
\elib{https://elibrary.ru/item.asp?id=46916424}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 207
\issue 3
\pages 782--798
\crossref{https://doi.org/10.1134/S0040577921060088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000667702600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111095975}
Linking options:
  • https://www.mathnet.ru/eng/tmf10029
  • https://doi.org/10.4213/tmf10029
  • https://www.mathnet.ru/eng/tmf/v207/i3/p438
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :181
    References:54
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024