The existence of a solution of a system of boundary layer equations that arise in the hydrodynamics of a non-Newtonian liquid is proved. It is established that the rate of propagation of the perturbations is finite under particular conditions. The existence of the solution of basic boundary problems and initial-boundary value problems for systems of magnetohydrodynamics of pseudoplastic and dilatantous media is proved. It is solved some free boundary problems of non-Newtonian and conducting fluids. The method of homogenization for the boundary layer equations with a rapidly oscillating parameter is applied.
Biography
Graduated from Faculty of Mathematics and Mechanics of M. V. Lomonosov Moscow State University (MSU) in 1968 (department of differential equations). Ph. D. thesis was defended in 1973. D. Sci. thesis was defended in 1999. A list of my works contains more than 127 titles.
Soros Associate Professor — 1997 and 1999. Soros Professor — 2001.
Main publications:
Samokhin V. N., “Obobschennye resheniya zadachi o prodolzhenii pogranichnogo sloya psevdoplasticheskoi zhidkosti”, Trudy sem. im. I. G. Petrovskogo, 3, 1978, 161–175
V. N. Samokhin, G. A. Chechkin, “Nonclassical problems of the mathematical theory of hydrodynamic boundary layer”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1, 11–20; Moscow University Mathematics Bulletin, 79:1 (2024), 11–21
2023
2.
M. A. Kisatov, V. N. Samokhin, G. A. Chechkin, “О пограничном слое Марангони в вязкой неньютоновской среде”, Tr. Semim. im. I. G. Petrovskogo, 33 (2023), 174–195
2022
3.
M. A. Kisatov, V. N. Samokhin, G. A. Chechkin, “Erratum to: On thermal boundary layer in a viscous non-Newtonian medium”, Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 486; Dokl. Math., 106:3 (2022), 486
4.
M. A. Kisatov, V. N. Samokhin, G. A. Chechkin, “On thermal boundary layer in a viscous non-Newtonian medium”, Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022), 28–33; Dokl. Math., 105:1 (2022), 23–27
R. R. Bulatova, V. N. Samokhin, G. A. Chechkin, “On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid”, Trudy Mat. Inst. Steklova, 310 (2020), 40–77; Proc. Steklov Inst. Math., 310 (2020), 32–69
R. R. Bulatova, V. N. Samokhin, G. A. Chechkin, “Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law”, Tr. Semim. im. I. G. Petrovskogo, 32 (2019), 72–90; J. Math. Sci. (N. Y.), 244:2 (2020), 158–169
V. N. Samokhin, G. A. Chechkin, “Equations of boundary layer for a generalized newtonian medium near a critical point”, Tr. Semim. im. I. G. Petrovskogo, 31 (2016), 158–176; J. Math. Sci. (N. Y.), 234:4 (2018), 485–496
V. N. Samokhin, G. M. Fadeeva, G. A. Chechkin, “Equations of the boundary layer for a modified Navier-Stokes system”, Tr. Semim. im. I. G. Petrovskogo, 28 (2011), 329–361; J. Math. Sci. (N. Y.), 179:4 (2011), 557–577
V. N. Samokhin, “Boundary Layer Formation in a Pseudoelastic Medium Under Gradual Acceleration”, Differ. Uravn., 40:3 (2004), 406–416; Differ. Equ., 40:3 (2004), 438–450
2000
10.
V. N. Samokhin, “The operator form and the solvability of magnetohydrodynamic equations for nonlinearly viscous media”, Differ. Uravn., 36:6 (2000), 816–821; Differ. Equ., 36:6 (2000), 904–910
V. N. Samokhin, “Equations of a magnetohydrodynamic boundary layer with diffraction conditions”, Differ. Uravn., 33:8 (1997), 1106–1113; Differ. Equ., 33:8 (1997), 1113–1120
V. N. Samokhin, “On a class of equations that generalize equations of polytropic filtration”, Differ. Uravn., 32:5 (1996), 643–651; Differ. Equ., 32:5 (1996), 648–657
1994
13.
V. N. Samokhin, “On the equations of polytropic filtration with a variable non-linearity”, Uspekhi Mat. Nauk, 49:3(297) (1994), 189–190; Russian Math. Surveys, 49:3 (1994), 196–197
V. N. Samokhin, “On a system of equations of a magnetohydrodynamic boundary layer of a dilatant medium”, Differ. Uravn., 29:2 (1993), 328–336; Differ. Equ., 29:2 (1993), 270–277
V. N. Samokhin, “On the system of equations of the laminar boundary layer in the presence of injection of a non-Newtonian fluid”, Sibirsk. Mat. Zh., 34:1 (1993), 157–168; Siberian Math. J., 34:1 (1993), 139–149
V. N. Samokhin, “On a problem with an unknown boundary in the hydrodynamics of electrically conducting media”, Uspekhi Mat. Nauk, 47:3(285) (1992), 173–174; Russian Math. Surveys, 47:3 (1992), 188–189
V. N. Samokhin, “Stationary problems of the magnetohydrodynamics of non-Newtonian media”, Sibirsk. Mat. Zh., 33:4 (1992), 120–127; Siberian Math. J., 33:4 (1992), 654–662
V. N. Samokhin, “On a system of equations in the magnetohydrodynamics of nonlinearly viscous media”, Differ. Uravn., 27:5 (1991), 886–896; Differ. Equ., 27:5 (1991), 628–636
V. N. Samokhin, “Existence of a solution of a modification of a system of equations of magnetohydrodynamics”, Mat. Sb., 182:3 (1991), 395–407; Math. USSR-Sb., 72:2 (1992), 373–385
V. N. Samokhin, “The mixing layer on the boundary between flows of two fluids with different properties”, Sibirsk. Mat. Zh., 30:2 (1989), 161–166; Siberian Math. J., 30:2 (1989), 298–302
1987
22.
V. N. Samokhin, “Generalized solutions of a system of equations of the boundary layer of dilatant fluids, and the finite rate of perturbations”, Differ. Uravn., 23:6 (1987), 1053–1061
23.
V. N. Samokhin, “A diffraction problem for strongly nonlinear equations”, Mat. Zametki, 42:2 (1987), 256–261; Math. Notes, 42:2 (1987), 645–648
1986
24.
V. N. Samokhin, “On a system of boundary-layer equations of dilatant fluids”, Uspekhi Mat. Nauk, 41:5(251) (1986), 195–196; Russian Math. Surveys, 41:5 (1986), 163–164
1985
25.
V. N. Samokhin, “Laminar mixing layer on the boundary of two flows”, Zh. Vychisl. Mat. Mat. Fiz., 25:4 (1985), 614–617; U.S.S.R. Comput. Math. Math. Phys., 25:2 (1985), 186–188
1982
26.
V. N. Samokhin, “Asymptotic expansions for the problem of boundary layer formation”, Zh. Vychisl. Mat. Mat. Fiz., 22:5 (1982), 1260–1265; U.S.S.R. Comput. Math. Math. Phys., 22:5 (1982), 255–261
1973
27.
V. N. Samokhin, “The system of equations of a boundary layer of a pseudoplastic fluid”, Dokl. Akad. Nauk SSSR, 210:5 (1973), 1043–1046
28.
V. N. Samokhin, “Development of a plane-parallel symmetric boundary layer when a sudden motion arises”, Tr. Mosk. Mat. Obs., 28 (1973), 117–133
1972
29.
V. N. Samokhin, “Equations for the boundary layer for a pseudoplastic fluid in the neighborhood of a stopping point”, Uspekhi Mat. Nauk, 27:6(168) (1972), 249–250