Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 502, Pages 28–33
DOI: https://doi.org/10.31857/S2686954322010076
(Mi danma233)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On thermal boundary layer in a viscous non-Newtonian medium

M. A. Kisatova, V. N. Samokhinb, G. A. Chechkinacd

a Lomonosov Moscow State University, Moscow, Russia
b Moscow Polytechnic University, Moscow, Russia
c Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
d Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
Citations (2)
References:
Abstract: The paper presents a generalization of the existence and uniqueness theorem for the classical solution to the system of equations for the temperature boundary layer in a viscous medium with O.A. Ladyzhenskaya rheological law.
Keywords: fluid boundary layer, viscous medium, O.A. Ladyzhenskaya relogical law, thermal boundary layer.
Funding agency Grant number
Russian Science Foundation 20-11-20272
This work was supported by the Russian Science Foundation, project no. 20-11-20272.
Presented: V. V. Kozlov
Received: 15.09.2021
Revised: 15.09.2021
Accepted: 22.12.2021
English version:
Doklady Mathematics, 2022, Volume 105, Issue 1, Pages 23–27
DOI: https://doi.org/10.1134/S1064562422010070
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: M. A. Kisatov, V. N. Samokhin, G. A. Chechkin, “On thermal boundary layer in a viscous non-Newtonian medium”, Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022), 28–33; Dokl. Math., 105:1 (2022), 23–27
Citation in format AMSBIB
\Bibitem{KisSamChe22}
\by M.~A.~Kisatov, V.~N.~Samokhin, G.~A.~Chechkin
\paper On thermal boundary layer in a viscous non-Newtonian medium
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 502
\pages 28--33
\mathnet{http://mi.mathnet.ru/danma233}
\crossref{https://doi.org/10.31857/S2686954322010076}
\elib{https://elibrary.ru/item.asp?id=48050922}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 1
\pages 23--27
\crossref{https://doi.org/10.1134/S1064562422010070}
Linking options:
  • https://www.mathnet.ru/eng/danma233
  • https://www.mathnet.ru/eng/danma/v502/p28
    Erratum
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:138
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024