Trudy Seminara imeni I. G. Petrovskogo
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Semim. im. I. G. Petrovskogo:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Seminara imeni I. G. Petrovskogo, 2019, Issue 32, Pages 72–90 (Mi tsp102)  

This article is cited in 2 scientific papers (total in 2 papers)

Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law

R. R. Bulatova, V. N. Samokhin, G. A. Chechkin
Full-text PDF (286 kB) Citations (2)
References:
Abstract: One considers flow past a body in an electrically conductive viscous fluid in magnetic field, the fluid being subject to a nonlinear rheological law. Solutions of the corresponding system of magnetohydrodynamic boundary layer are examined in a neighborhood of a frontal critical point.
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 244, Issue 2, Pages 158–169
DOI: https://doi.org/10.1007/s10958-019-04611-4
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: R. R. Bulatova, V. N. Samokhin, G. A. Chechkin, “Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law”, Tr. Semim. im. I. G. Petrovskogo, 32, 2019, 72–90; J. Math. Sci. (N. Y.), 244:2 (2020), 158–169
Citation in format AMSBIB
\Bibitem{BulSamChe19}
\by R.~R.~Bulatova, V.~N.~Samokhin, G.~A.~Chechkin
\paper Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law
\serial Tr. Semim. im. I.~G.~Petrovskogo
\yr 2019
\vol 32
\pages 72--90
\mathnet{http://mi.mathnet.ru/tsp102}
\elib{https://elibrary.ru/item.asp?id=43223295}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 244
\issue 2
\pages 158--169
\crossref{https://doi.org/10.1007/s10958-019-04611-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85076161574}
Linking options:
  • https://www.mathnet.ru/eng/tsp102
  • https://www.mathnet.ru/eng/tsp/v32/p72
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :61
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024