Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 1, Pages 157–168 (Mi smj1705)  

This article is cited in 1 scientific paper (total in 1 paper)

On the system of equations of the laminar boundary layer in the presence of injection of a non-Newtonian fluid

V. N. Samokhin
Full-text PDF (969 kB) Citations (1)
Abstract: In the domain $D=\{0<x<X,\,0<y<\infty\}$, the following problem with free boundary $\Gamma:y=y_*(x)>0$, $x\in[0,X]$ is studied:
$$ u_iu_{ix}+v_iu_{iy}=\nu\bigl(|u_{iy}|^{n_i-1}u_{iy}\bigr)_y+U(x)U_x(x), \quad u_{ix}+v_{iy}=0, $$
where $i=1$ for $0\le y\le y_*(x)$, $i=2$ for $y_*(x)<y<\infty$; $\nu_i>0$, $n_1=n>1$, $n_2=1$; $u_i(0,y)=u_{i0}(y)$, $u_1(x,0)=0$, $v_1(x,0)=v_0(x)>0$, $u_2(x,y)\to U(x)>0$ as $y\to\infty$;
$$ \frac{\partial y_*(x)}{\partial x}=\frac{v_i(x,y_*(x))}{u_i(x,y_*(x))} $$
$y_*(0)>0$ is a given point; and $u_1=u_2$, $\nu_1|u_{1y}|^{n-1}u_{1y}=\nu_2u_{2y}$ on the curve $\Gamma$. Under some conditions, existence and uniqueness for a solution to the problem are proved.
Received: 24.09.1991
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 1, Pages 139–149
DOI: https://doi.org/10.1007/BF00971250
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: V. N. Samokhin, “On the system of equations of the laminar boundary layer in the presence of injection of a non-Newtonian fluid”, Sibirsk. Mat. Zh., 34:1 (1993), 157–168; Siberian Math. J., 34:1 (1993), 139–149
Citation in format AMSBIB
\Bibitem{Sam93}
\by V.~N.~Samokhin
\paper On the system of equations of the laminar boundary layer in the presence of injection of a non-Newtonian fluid
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 1
\pages 157--168
\mathnet{http://mi.mathnet.ru/smj1705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1216845}
\zmath{https://zbmath.org/?q=an:0835.76026}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 1
\pages 139--149
\crossref{https://doi.org/10.1007/BF00971250}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993KZ84700016}
Linking options:
  • https://www.mathnet.ru/eng/smj1705
  • https://www.mathnet.ru/eng/smj/v34/i1/p157
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025