|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
V. G. Ryabov, “Nonlinearity of vectorial functions over finite fields”, Diskr. Mat., 36:2 (2024), 50–70 |
2. |
V. G. Ryabov, “Distance between vectorial Boolean functions and affine analogues (following the Eighth International Olympiad in Cryptography)”, Mat. Vopr. Kriptogr., 15:1 (2024), 127–142 |
1
|
|
2023 |
3. |
V. G. Ryabov, “New bounds on the nonlinearity of PN and APN functions over finite fields”, Diskr. Mat., 35:3 (2023), 45–59 |
2
|
4. |
V. G. Ryabov, “Characteristics of nonlinearity of vectorial functions over finite fields”, Mat. Vopr. Kriptogr., 14:2 (2023), 123–136 |
2
|
5. |
V. G. Ryabov, “Nonlinearity of APN functions: comparative analysis and estimates”, Prikl. Diskr. Mat., 2023, no. 61, 15–27 |
2
|
|
2022 |
6. |
V. G. Ryabov, “Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues”, Diskr. Mat., 34:2 (2022), 83–105 ; Discrete Math. Appl., 33:6 (2023), 387–403 |
7
|
7. |
V. G. Ryabov, “On the question on the approximation of vectorial functions over finite fields by affine analogues”, Mat. Vopr. Kriptogr., 13:4 (2022), 125–146 |
3
|
|
2021 |
8. |
V. G. Ryabov, “Nonlinearity of functions over finite fields”, Diskr. Mat., 33:4 (2021), 110–131 ; Discrete Math. Appl., 33:4 (2023), 231–246 |
5
|
9. |
V. G. Ryabov, “Criteria for maximal nonlinearity of a function over a finite field”, Diskr. Mat., 33:3 (2021), 79–91 ; Discrete Math. Appl., 33:2 (2023), 117–126 |
5
|
10. |
V. G. Ryabov, “Maximally nonlinear functions over finite fields”, Diskr. Mat., 33:1 (2021), 47–63 ; Discrete Math. Appl., 33:1 (2023), 41–53 |
7
|
11. |
V. G. Ryabov, “Nonlinearity of bent functions over finite fields”, Mat. Vopr. Kriptogr., 12:4 (2021), 87–98 |
2
|
|
2020 |
12. |
V. G. Ryabov, “Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues”, Diskr. Mat., 32:4 (2020), 89–102 ; Discrete Math. Appl., 31:6 (2021), 409–419 |
8
|
13. |
V. G. Ryabov, “On the degree of restrictions of $q$-valued logic vector functions to linear manifolds”, Diskr. Mat., 32:2 (2020), 61–70 ; Discrete Math. Appl., 31:2 (2021), 127–134 |
5
|
|
2019 |
14. |
V. G. Ryabov, “On the degree of restrictions of $q$-valued logic functions to linear manifolds”, Prikl. Diskr. Mat., 2019, no. 45, 13–25 |
5
|
|
Organisations |
|
|
|
|