Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2021, Volume 12, Issue 4, Pages 87–98
DOI: https://doi.org/10.4213/mvk385
(Mi mvk396)
 

This article is cited in 2 scientific papers (total in 2 papers)

Nonlinearity of bent functions over finite fields

V. G. Ryabov

NP «GST», Moscow
Full-text PDF (488 kB) Citations (2)
References:
Abstract: A function of $n$ variables over a field of $q$ elements is called maximally nonlinear if it has the greatest nonlinearity among all $q$-valued functions of $n$ variables. It is proved that for $q>2$ and even values of $n$, a necessary condition for the maximum nonlinearity of a function is the absence of a linear manifold of dimension not smaller than $n/2$, on which its restriction coincides with the restriction of some affine function. It follows from this that the bent functions from Maiorana–McFarland and Dillon families are not maximally nonlinear. A new family of maximally nonlinear bent functions of degrees from $2$ to $\max \{2, (q-1)(n/2-1)\}$ with nonlinearity equal to $(q-1)q^{n-1} - q^{n/2-1}$ is constructed.
Key words: finite field, nonlinearity, bent function, maximally nonlinear function.
Received 06.IX.2021
Document Type: Article
UDC: 519.716.325
Language: Russian
Citation: V. G. Ryabov, “Nonlinearity of bent functions over finite fields”, Mat. Vopr. Kriptogr., 12:4 (2021), 87–98
Citation in format AMSBIB
\Bibitem{Rya21}
\by V.~G.~Ryabov
\paper Nonlinearity of bent functions over finite fields
\jour Mat. Vopr. Kriptogr.
\yr 2021
\vol 12
\issue 4
\pages 87--98
\mathnet{http://mi.mathnet.ru/mvk396}
\crossref{https://doi.org/10.4213/mvk385}
Linking options:
  • https://www.mathnet.ru/eng/mvk396
  • https://doi.org/10.4213/mvk385
  • https://www.mathnet.ru/eng/mvk/v12/i4/p87
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024