Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2021, Volume 33, Issue 1, Pages 47–63
DOI: https://doi.org/10.4213/dm1631
(Mi dm1631)
 

This article is cited in 7 scientific papers (total in 7 papers)

Maximally nonlinear functions over finite fields

V. G. Ryabov

NP “GST”, Moscow, Russia
Full-text PDF (623 kB) Citations (7)
References:
Abstract: An $n$-place function over a field $\mathbf {F}_q$ with $q$ elements is called maximally nonlinear if it has the largest nonlinearity among all $q$-valued $n$-place functions. We show that, for even $n \ge 2$, a function is maximally nonlinear if and only if its nonlinearity is $q^{n-1}(q - 1) - q^{\frac n2-1}$; for $n=1$, the corresponding criterion for maximal nonlinearity is $q-2$. For $q>2$ and even $n \ge 2$, we describe the set of all maximally nonlinear quadratic functions and find its cardinality. In this case, all maximally nonlinear quadratic functions are quadratic bent functions and their number is smaller than the halved number of the bent functions.
Keywords: finite field, $q$-valued logic, nonlinearity, affine functions, bent functions.
Received: 22.12.2020
English version:
Discrete Mathematics and Applications, 2023, Volume 33, Issue 1, Pages 41–53
DOI: https://doi.org/10.1515/dma-2023-0005
Document Type: Article
UDC: 519.716.325+519.719.2
Language: Russian
Citation: V. G. Ryabov, “Maximally nonlinear functions over finite fields”, Diskr. Mat., 33:1 (2021), 47–63; Discrete Math. Appl., 33:1 (2023), 41–53
Citation in format AMSBIB
\Bibitem{Rya21}
\by V.~G.~Ryabov
\paper Maximally nonlinear functions over finite fields
\jour Diskr. Mat.
\yr 2021
\vol 33
\issue 1
\pages 47--63
\mathnet{http://mi.mathnet.ru/dm1631}
\crossref{https://doi.org/10.4213/dm1631}
\transl
\jour Discrete Math. Appl.
\yr 2023
\vol 33
\issue 1
\pages 41--53
\crossref{https://doi.org/10.1515/dma-2023-0005}
Linking options:
  • https://www.mathnet.ru/eng/dm1631
  • https://doi.org/10.4213/dm1631
  • https://www.mathnet.ru/eng/dm/v33/i1/p47
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024