Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2021, Volume 33, Issue 4, Pages 110–131
DOI: https://doi.org/10.4213/dm1674
(Mi dm1674)
 

This article is cited in 4 scientific papers (total in 4 papers)

Nonlinearity of functions over finite fields

V. G. Ryabov

NP “GST”, Moscow, Russia
Full-text PDF (652 kB) Citations (4)
References:
Abstract: The nonlinearity and additive nonlinearity of a function are defined as the Hamming distances, respectively, to the set of all affine mappings and to the set of all mappings having nontrivial additive translators. On the basis of the revealed relation between the nonlinearities and the Fourier coefficients of the characters of a function, convenient formulas for nonlinearity evaluation for practically important classes of functions over an arbitrary finite field are found. In the case of a field of even characteristic, similar results were obtained for the additive nonlinearity in terms of the autocorrelation coefficients. The formulas obtained made it possible to present specific classes of functions with maximal possible and high nonlinearity and additive nonlinearity.
Keywords: nonlinearity, finite field, Fourier coefficients, autocorrelation, bent function, translator.
Received: 15.09.2021
English version:
Discrete Mathematics and Applications, 2023, Volume 33, Issue 4, Pages 231–246
DOI: https://doi.org/10.1515/dma-2023-0021
Document Type: Article
UDC: 519.716.325
Language: Russian
Citation: V. G. Ryabov, “Nonlinearity of functions over finite fields”, Diskr. Mat., 33:4 (2021), 110–131; Discrete Math. Appl., 33:4 (2023), 231–246
Citation in format AMSBIB
\Bibitem{Rya21}
\by V.~G.~Ryabov
\paper Nonlinearity of functions over finite fields
\jour Diskr. Mat.
\yr 2021
\vol 33
\issue 4
\pages 110--131
\mathnet{http://mi.mathnet.ru/dm1674}
\crossref{https://doi.org/10.4213/dm1674}
\transl
\jour Discrete Math. Appl.
\yr 2023
\vol 33
\issue 4
\pages 231--246
\crossref{https://doi.org/10.1515/dma-2023-0021}
Linking options:
  • https://www.mathnet.ru/eng/dm1674
  • https://doi.org/10.4213/dm1674
  • https://www.mathnet.ru/eng/dm/v33/i4/p110
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025