Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Neznakhina, Ekaterina Dmitrievna

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8
Presentations: 1

Number of views:
This page:286
Abstract pages:1538
Full texts:395
References:263
Candidate of physico-mathematical sciences

https://www.mathnet.ru/eng/person105364
List of publications on Google Scholar
List of publications on ZentralBlatt
https://www.researchgate.net/profile/https://www.researchgate.net/profile/Katherine_Neznakhina

Publications in Math-Net.Ru Citations
2023
1. E. D. Neznakhina, Yu. Yu. Ogorodnikov, K. V. Ryzhenko, M. Yu. Khachay, “Approximation algorithms with constant factors for a series of asymmetric routing problems”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023),  89–97  mathnet  elib; Dokl. Math., 108:3 (2023), 499–505
2. M. Yu. Khachay, E. D. Neznakhina, K. V. Ryzhenko, “Polynomial-Time Approximability of the Asymmetric Problem of Covering a Graph by a Bounded Number of Cycles”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:3 (2023),  261–273  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S121–S132  scopus 1
3. Ksenia  Ryzhenko, Katherine  Neznakhina, Michael  Khachay, “Fixed ratio polynomial time approximation algorithm for the Prize-Collecting Asymmetric Traveling Salesman Problem”, Ural Math. J., 9:1 (2023),  135–146  mathnet  elib 4
2022
4. M. Yu. Khachay, E. D. Neznakhina, K. V. Ryzhenko, “Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022),  241–258  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S140–S155  isi  scopus 5
2017
5. M. Yu. Khachay, E. D. Neznakhina, “Solvability of the Generalized Traveling Salesman Problem in the class of quasi- and pseudopyramidal tours”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  280–291  mathnet  elib
2016
6. M. Yu. Khachai, E. D. Neznakhina, “Approximation Schemes for the Generalized Traveling Salesman Problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  283–292  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 97–105  isi  scopus 19
2015
7. E. D. Neznakhina, “A PTAS for the Min-$k$-SCCP in a Euclidean space of arbitrary fixed dimension”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  268–278  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 120–130  isi 2
2014
8. M. Yu. Khachai, E. D. Neznakhina, “Polynomial-time approximation scheme for a Euclidean problem on a cycle covering of a graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  297–311  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 111–125  isi  scopus 11

Presentations in Math-Net.Ru
1. Эффективные алгоритмы с гарантированными оценками точности для некоторых обобщений задачи коммивояжера
E. D. Neznakhina
Seminar for Optimization Laboratory
September 22, 2017 11:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024