Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 3, Pages 241–258
DOI: https://doi.org/10.21538/0134-4889-2022-28-3-241-258
(Mi timm1940)
 

This article is cited in 5 scientific papers (total in 5 papers)

Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem

M. Yu. Khachaya, E. D. Neznakhinaab, K. V. Ryzhenkoa

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (360 kB) Citations (5)
References:
Abstract: For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the $(22+\varepsilon)$-approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019.
Keywords: asymmetric traveling salesman problem, constant-factor approximation algorithm, polynomial-time reduction, Steiner cycle problem, generalized traveling salesman problem, prize collecting traveling salesman problem, vehicle routing problem.
Funding agency Grant number
Russian Science Foundation 22-21-00672
This work was supported by the Russian Science Foundation (project no. 22-21-00672).
Received: 12.05.2022
Revised: 14.06.2022
Accepted: 20.06.2022
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2022, Volume 319, Issue 1, Pages S140–S155
DOI: https://doi.org/10.1134/S0081543822060128
Bibliographic databases:
Document Type: Article
UDC: 519.16 + 519.85
Language: Russian
Citation: M. Yu. Khachay, E. D. Neznakhina, K. V. Ryzhenko, “Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 241–258; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S140–S155
Citation in format AMSBIB
\Bibitem{KhaNezRyz22}
\by M.~Yu.~Khachay, E.~D.~Neznakhina, K.~V.~Ryzhenko
\paper Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 3
\pages 241--258
\mathnet{http://mi.mathnet.ru/timm1940}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-3-241-258}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4488895}
\elib{https://elibrary.ru/item.asp?id=49352764}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 319
\issue , suppl. 1
\pages S140--S155
\crossref{https://doi.org/10.1134/S0081543822060128}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905214000018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85163006876}
Linking options:
  • https://www.mathnet.ru/eng/timm1940
  • https://www.mathnet.ru/eng/timm/v28/i3/p241
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :44
    References:30
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024